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FOREWORD

The METOP documentation, related to the instrument interfaces consists of the following two
documents ;

- the Genera Instrument Interface Control Document (GICD - DRD - 21).

This document aims at defining all the requirements on the interfaces, tests and programme to which
all thanstruments shall comply for the METOP mission. It isageneric specification, applicable to
any of the METOP payload complement instruments, that deals with interfaces from the platform
towards the instruments.

- The Instrument Interface Control Document (ICD) Outlines (DRD - 22).

This document gathers each individual instrument ICD outline that defines the technica and
programmatic interface information applicable to a particular instrument. It these deals with interfaces

from the instruments towards the platform, and with the instrument responses to the generic GICD
(DRD - 21).

Both documents have been elaborated by MATRA MARCONI SPACE along with DORNIER and
MMS space systems, Ltd.
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1. GENERAL

11 PURPOSE OF THE DOCUMENT

The Instrument Interface Control Document (ICD) Outlines document defines the interfaces of each of
the instruments the METOP platform shall accommodate. It then deals with requirements from the
instrument towards the platform, and with responses of the instruments to the General Instrument
Interface Control Document (GICD).

It aims at gathering in a single document the instrument related information that have been accounted
for the METOP platform design. In a general way, this information has been provided by the relevant
documentation (mainly Interface Documentation) provided by ESA in the frame of the METOP
Phase A, completed by further elements received from ESA (e.g. telefax, letter, additional documents,
outcomes from the Working Mestings.. .). Hence this document is this only METOP document that
clearly defines al the instrument interfaces. Note however that the level of information corresponds to
the current definition status of the system (Phase A), and so does not address in detail the instrument
interfaces.

Thus issue presents the interface information for the following instruments :

Advanced Verv-High Resolution Radiometer AVHRR/3
High Resolution Infra-Red Sounder HIRS/3
Advanced Microwave Sounding Unit - Al AMSU-AI
Advanced Microwave Sounding Unit - A2 AMSU-A2
Microwave Humidity Sounder MHS
Data Collection System DCS/2
Infrared Atmospheric Sounding Interferometer LASI
Advanced Scatterometer ASCAT
Mulu-frequency Imagmg Microwave Radiometer MIMR
Scanner for Radiation Budget SCARAB

Global Ozone Monitoring Experiment GOME
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12 OVERALL METOP PROGRAMME

The METOP satellite is an element of the EPS/METOP system, that will be jointly developed by ESA
and EUMETSAT. This system mission objectives are operational meteorology and climate monitoring
from polar orbit, in order to complement the NOAA Polar Orbiting Environmental Satellite System.

The METOP satdllite is composed of a platform (or spacecraft) and a set of instruments constituting the
payload. This comprises:

Operational Meteorological Package

* Advanced Very-High Resolution Radiometer AVHRR/3
* High Resolution Infra-Red Sounder HIRS/3
* Advanced Microwave Sounding Unit - A AMSU-AI/A2
* Microwave Humidity Sounder MHS
* Data Collection System DCS/2
* Infrared Atmospheric Sounding Interferometer IASI
- Climate Monitoring Payload
* Advanced Scatterometer ASCAT
* Multi-frequency Imaging Microwave Radiometer MIMR
* Scanner for Radiation Budget SCARAB
* Globa Ozone Monitoring Experiment GOME

Note that the METOP programme comprises a series of two satellites : the first one is scheduled for an
ARIANE 4 launch in late 2000, and the second one will be launched in line with the operational needs.

13. REFERENCE DOCUMENTATION

AD 1 MMS/MET/SPE/ILD/159.94 Genera Instrument Interface Control Document
(GICD) Issue 2, September 1994
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1. GENERAL

11. PURPOSE OF THE DOCUMENT

The Instrument Interface Control Document (ICD) Outlines document defines the interfaces of each of
the instruments the METOP platform shall accommodate. It then deals with requirements from the
instrument towards the platform, and with responses of the wnstruments to the General Instrument
Interface Control Document (GICD).

It aims at gathering in a single document the instrument related information that have been accounted
for the METOP platform design. In a general way, this information has been provided by the relevant
documentation (mainly Interface Documentation) provided by ESA in the frame of the METOP
Phase A, completed by further elements received from ESA (e.g. telefax, letter, additional documents,
outcomes from the Working Mesetings...). Hence this document is this only METOP document that
clearly defines al the instrument interfaces. Note however that the level of information corresponds to
the current definition status of the system (Phase A), and so does not address in detail the instrument
interfaces

This issue presents the interface information for the following instruments :

- Advanced Verv-High Resolution Radiometer AVHRR/3
- High Resolution Infra-Red Sounder HIRS/3

- Advanced Microwave Sounding Unit - Al AMSU-A 1
- Advanced Microwave Sounding Unit - A2 AMSU-A2
- Microwave Humidity Sounder MHS

- Data Collection System DCS/2

- Infrared Atmospheric Sounding Interferometer IASI

- Advanced Scatterometer ASCAT

- Multi-frequency Imaging Microwave Radiometer MIMR

- Scanner for Radiation Budget SCARAB

- Globa Ozone Monitonng Espenment GOME
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2. INSTRUMENT INTERFACE SYNTHESIS

2.1. INSTRUMENT BUDGETS
Mass and Power Budgets

The instrument resources in terms of mass and power are summarized in Table 2. 1/1 The quoted values
identifv the system contingency considered for each instrument for the spacecraft overall dimensioning.
This contingency has been forced to zero for IASI mass, MIMR mass, MIMR power and SCARAB
power, as these values are assumed to already include a margin.

Note that no additional margin will be considered on top of this value in the frame of the METOP
system activities.

Data Rate Budgets

METOP data rates are presented in Table 2.1/2. It identifies the different generated data streamsin
order to comply with the meteorological service requirements. The proposed budgets consists of
packetized data rates.

2.2. INSTRUMENT INDUCED DISTURBANCE STATUS
A status on the available datais presented in Table 2.2/1

2.3. THERMAL INTERFACES
The main instrument thermal characteristics are illustrated in Table 2.3/1

24. ELECTRICAL INTERFACES

The connection concept between the instruments and the platform is illustrated in Figures 2.4/1 and
2.4/2 respectively for the NOAA K,L.M instruments, i.e. AVHRR/3, HIRS/3, AMSU-AI, AMSU-A2
and DCS/2, and for the European instruments, i.e. MHS, 1ASI, ASCAT, MIMR, SCARAB and
COME.
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BASIC MASS CURRENT MASS BASIC POWER TRRENT POWER
NAME UNTT ER U.\ﬂ TOTAL | CONT. | iR UNTT| TOTAL R UNTT] TOTAL | CONT. | iR UNTT] TOTAL
[ kg | ke w ¥ L ®
AVHRR/ [AVHRR/3 31.300  3L300 5% 32865 32,865 26,400 26,400 10% 29,040 29,040
HIRS/3 HIRS/3 33100 33,100 % 34755 34,755 22800 22800 10% 25080 25,080
AMSU-A1  |AMSU-A1L 53300 53,300 % 55965 55965 88,300 88,300 10% 97,130 97,130
AMSU-A2  |AMSU-A2 47400 47,400 S% $9T0 6,770 37250 31250 10% 40975 40975
MHS MHS 60,000 60,000 10% 66,000 66,000 90,000 90,000 1% 100,000 100,000
DCsn RPU 13,800 39,000 % 14.490 40950 TBD 27,445 10% TBD 30,190
SPL-A 12,600 13.230 TBD TBD
SPL-B 12.600 13.230 TBD TBD
ASI Sensor 99,800 147,600 0% 99,800 147,600 74,000 196,000 10% 81.400 215,600
Maun Elect 27,300 27,300 62,000 68,200
Secoadary Elm 20,500 20.500 60,000 66,000
ASCAT \Mud Anteana 2300 190370 10% 24530 212,17 262,384 10% 288,622
Mud Am. Sup. Struct. 7.000 10% 7.700
Stde Ant. Right Fore 2.200 10% 32,120
H&Depl. Syst. ANTRF 9.700 20% 11.640
Side Am. Right ARt 2200 10% 32120
H&Depl. Syst. ANTRA 12.800 20% 15.360
SFE 13.990 10% 15389 13,000 14300
HPA-SSPA+red. 4.600 10% 5.060 117,540 129.294
HPA-EPC+red 6,760 10% 7.436 50210 55.231
RFU+red 12,000 10% 13.200 Pal 24.860
DPU +red 13,600 10% 14,960 2,300 25.630
ICU +red. 13.000 10% 14,300 17.500 19,250
PDU 3260 10% 3586 15.870 17.457
WR Ran 2600 0% 3.120
wGsS 0,860 10% 0.946 0,000 0,000
DPE 1.500 10% 1.650
Haroess 8.000 2% 9.600 2364 2,600
MIMR Sensor 146,400 160,000 0% 146,400 160,888 82,500 171,000 0% £2500 171,000
MCU 3,600 3.600 70,000 70,000
ICPU *red. 7.000 7.000 10,500 10.500
LVPS+red. 3,000 3,000 8.000 8,000
SCARAB  |SCARASB 50,000 50,000 0% 60,000 60,000 75000 75,000 0% 75000 75,000
GOME GOME 56.000 56,000 S% 8800 53800 42000 42,000 % 44100 44,100
TOTAL 8638.1 919.4 10386 1116,7
!E kg w w

Figure 2.1/1 : METOP |nstrument Resource Summary (Mass and Power)
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' GLOBAL
NAME LRPT HRPT-I HRPT-Q DATA
kbps kbps kbps kbps
AVHRR/3 37.968 621.984 - 62 1.984
HIRS/3 2.898 2.898 2,898
AMSU-AI 1.258 1.258 - 1.258
AMSU-AZ 0.330 0.330 0.330
MHS 3,840 3,840 - 3.840
DCS/2 2.560 2.560 2.560
IASI . 1500.000 1500.000
ASCAT - 43,530 43530
MIMR - 112.000 112.000
SCARAB 3.000 3,000
COME 50.000 50.000
HK Data 4.096 4.096 4.096
Adm. Message 2.000 2.000 2.000
TOTAL 54,9 685,5 1664,0 23455
kbps kbps kbps kbps

Figure 2.1/2 : METOP Data Distribution Service (Packetized Data Rate Budgets)
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Instrument Disturbing Source T Provided Data Missing Data
AVHRR/3 Continuous scanning Kinetic momentum Scan axis torque
Unbalance effects
HIRS/3 Step scanning Kinetic momentum Scan axis torque
Unbalance effects
AMSU-A1 Step scanning Torque profile Unbalance effects
AMSU-A2 Step scanning Residual torque profile Unbalance effects
MHS Step scanning Residual torque profile Unbalance effects
IASI Scan mirror motion Scan axis torque Unbalance effects
Cube corners motion Induced forces -
MIMR Continuous scanning Unbalance effects -
SCARAB Unbalance effects
GOME Scanning Peak torque and angular Frequency content
momentum amplitude and / or time plot

Figure 2.2/1: METOP Instrument Induced Disturbances Summary and Status
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THERMAI AQCEPTANCE | MPERATU JISSIPATED RBQUIRED
NAME UNTT JONTRO! | Operatng fNao-Operatn | iwnch-Ou | Stabiliy POWER ADIATOR SIDE
JONCEP] °C °C °C A w JXOOMMODA TION
AVHRR/3 |AVHRRA c 10130 30 0 2 TBD YE AnG-Sun
HIRS3  [HRS3 c s -10/30 -10 s ™D Yes Ant-Sun
AMSU-A1  |AMSU-A1 A 828 -30/66 .20 NO TBD Yes Veloaty Preferred
AMSU-A2  (AMSU-A2 A a8 -30/66 .20 NO TBD Yo Veloaty Preferred
MHS MHS A -8/30 05 -10 NO TBD Yes
pC? RPU B -5M4S 30060 -10 NO 30 Total NO
SPU-A 8 5145 3060 -10 NO NO
SPU-B B -5p45 30060 -10 NO No
1AST Sensor Module A 103 4050 40 No TBD Yes Anti-Sun
Main Elect. Moduk A ~40/60 40060 -30 No TBD Yoo Ant-padir
Secondary Elec. M. \ (B poss. -40/60 400 -30 NO TBD Yes Ant-gadir
ASCAT  |Mid Aowms A TBD TBD TBD NO 8D
Side Ant Rught For A 8D TBD TBD NO TBD
Side Ant Rught AR A TBD TBD TBD No 8D
SFE A T8D TBD TBD NO 20 TBD
SSPA+red B -5/40 30170 -25 NO 83 No
EPCered. B -840 -3010 228 NO ss NO
RFU+red. B -5440 3070 25 NO 25 No
DPUsred. B 5440 -40/70 -25 No 2% No
ICU+red. B 1050 4010 .28 NO 19 No
PDU B 1050 4070 -25 NO 17 No
DPE B T8D TBD TBD No eployment Ot NO
WG B TBD TBD TBD NO 0 No
Harness
MIMR Seasor Module A TBD TBD TBD TBD TBD Yes Veloary
MCU B TBD TBD TBD T8D m No
ICPUred. B TBD TBD TBD T8D Il No
LVPS+red. B TBD TBD TBD TBD 8 No
.SCARAB [SCARAB A TBD TBD TBD TED TBD TBD
GOME  |GOME A TBD TBD TBD TBD 22 TBC Yes Veloaty

Figure 2.3/1: METOP Ingtrument Thermal Interface Summar)
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_— — —_ Level Discrete Cormmonds
fu T .
| | F [ Pulse Discrete Commancs
TITITITITL | | 248V Clock
I | 998 itz Clock (AVHRR)
[ . 1Hz Clock (HIRS)
! g 8 Symc Sgnol (AMSU-AT&AZ and MHS)
| l‘ 33 Malor Frame Syne Signal
I | | 128 Syne Signal
.
I\ Gocks & syne Signal 1F | 2568 Syme Sional
j—m. . === = Anciog ™™
I Digital A TM
| * Howekeeping ™ IfF
! !
o — === -1
L Commondacontel _ _ _ ) 8326 Cock €1 General
————————— I NOAA KLM
| 16841 Clock (C1 for AMSU-A1/-A2)
T Instrument
{ Data Enabia (A1)
I -
!_Measuemem Dato I/F A Digital A Measurement Data
NIU
l.___.___.‘____.___ +28 V Main Power Bus
| f
| Power | pstodion. | J28V Scomer B
| Conversion | ISwﬁching \ +28V Switchad Telemetry Bus
& & r
| umitation ' [ Frotection | +28V Pusso Lood Bus
| | ' L +10V Intertace Bus
| l I | Active Thamnal Control Power Bus
”__._._..||L.__._J—

— . - — — —

Switched Telemetry Themmistor TM

I Thermistor / Themocoup! Active T/C Tharmocoupia Signats
I Conditioning and \ Thermistor-/Thermocoupie-
__ Monitoring . * Condfoning
PCU
Test Ponts |
Satety Heaters/Thermocoupies
PLM

Special
EGSE

Figure 2. 4/1 : Electrical Interfaces of NOAA K,L,M |nstruments
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OBDH Bus
L R KR R R
PMC
LBR Measurement Data
27/
777
FMU
r - - - - - - -1 Equipment Power Bus
| Power Switching [ ICU Power Bus
| & Protection F
________ -
—————— - = . EQSOL
l ! DSL Line
: Acquisition & Commands ' DBU ON Cmd
| | DBU OFF Cmd
- == - General
| Deployment Pov_v.er— o SoPnTe T EDI, EM1 & AO
| & Sienal Acquisiti ‘ Deployment Relay Status - Instrument
en ! on Deployment Analogue Acquisition .
| ¢ inel.
L == - ICU & DBU
PDU
r - — — — — — - | Equipment Heater Power
| Heater Power Switching I ICU Heater Power j
[ & Protection T
- - —_— —
—r— - - - - - -1 Equipment Thermistors UF
| Thermistor~+Thermocouple- ‘ ICU Thermistors UF
|| Conditioning/Monitonng 1 Thermistor / Th oios
- - = = = = = =17
TCU
Pyro Lines
Instrument to Instrument I'F
F
PLM
J Other Instrument
SVM or Avionics
Figure 2.4/2 : Electrical Interfaces of EAMI, EDI and AO instruments
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2.5, MECHANICAL AND STRUCTURAL TEST STATUS

A status of the tests required on the METOP instruments is illustrated in Table 2.5/1. It takes into
account the qualification of some instruments by previous programmes (Cf. relevant ICD for
explanation and details).

Quasi- Dynamic
Instrument |  Static Model High Sine Burst | Random Shock Acoustic
Tests Validation | Level Sine
AVHRR/3 Acc. TBC X
HIRS/3 Acc. TBC X
AMSU-Al Qual. X
AMSU-A2 X X X Qual. X
MHS Qual. X
DCS/2 Acc. X
IASI X Qual. X
ASCAT X X X Qual. X X
MIMR X X X Qual. X X
| SCARAB X Qual. X
GOME X X X Acc. X

Figure 2.5/1 : METOP |nstrument Mechanical Test Requirement Status (TBC)
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1. GENERAL

11. PURPOSE OF THE DOCUMENT

This document is the AVHRR/3 Instnunent Interface Control Document Outline. It deals with interface
definition from the instrument to the METOP platform and with AVHRR/3 responses to the generic
METOP General Instrument Interface Control Document (GICD).

12 INSTRUMENT PRESENTATION

The Advanced Very High Resolution Radiometer, AVHRR/3, scans the Earth surface in six spectral
bands in the range of 0.7 - 12 microns. It provides day-night imaging of land, water and clouds,
measures sea surface temperature, ice, snow and vegetation cover and characteristics.

AVHRR/3 has an instant foot print in nadir of 1.1 km. Scanning is cross-track with a total field of view
of + 56 deg. about nadir. Instrument detectors are passively cooled to less than 100 K. The instrument
uses an internal rotational scanning mirror which also views deep space and an interna calibration
source.

Central Wavelength | Half Power Points | Channel Noise Specifications | Time Availability
(um) (um) Requirements
0.630 0.580 - 0.680 S/N 9:1 @ 0.5% albedo 24 hours
2 0.862 0.725 - 1.000 S/N 9:1 @ 0.5% albedo 24 hours
3a 1.610 1.580 - 1.640 S/N 20: 1 @ 0.5 % albedo Day
3b 3.740 3.550-3.930 0.12K @ 300K Night
4 10.800 10.300 - 11.300 0.12K @ 300K 24 hours
5 12.000 11.500 - 12.500 0.12K @ 300K 24 hours
Scan Type : Continuous
scan Rate (s): 0.1667
IFOV (deg.) : 0.0745 (sguare)
Earth View Pixels per Scan: 2048
Swath (deg. with respect to the nadir direction) + 55.37 deg.

13. APPLICABLE AND REFERENCE DOCUMENTATION
Applicable Documentation

General Instrument Interface Control Document - GICD
Ref. MMS/MET/SPE/JLD/159 94. Iss. 2. dated Sept. 94

Reference  Documentation

Unique Interface Specification for the AVHRR/?
Ref. 1S-20029950 (MET0020), dated Januanv 1992
To be replaced bv Rev. A. July 93 for future phase.
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Performance Assurance Requirements for the NOAA-K, L & M AVHRR/3 and HIRS/3

Ref. S-480-29.1 (MET0154), dated March 1990, rev. G

Outline Drawing - AVHRR/3 Instrument
Ref. 8 157456 (MET0309), dated November 1993

Therma Interface Drawing AVHRR/3
Ref. 8 157457 (METO0510), dated November 1993
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2. MECHANICAL INTERFACE DESCRIPTION

2.1. INSTRUMENT PHYSICAL CHARACTERISTICS

2.1.1. Module / Unit Identification

AVHRR/3 is comprised of five modules (scanner, electronic, radiant cooler, optical subsystem and
baseplate unit modules), which are assembled together into a single unit instrument.
The Part Number and Identification Code of the AVHRR/3 instrument are

PARTNO: TBD

ID CODE : TBD

The location of the labels giving these Part Numbers and Identification Codes are defined in the
Mechanical Interface Control Drawing.

796 x 364 X 292 mm.
(31.33 x 14.35 x 11.5in.)

The stowed envelope is : L (Velocity) x W x H (Earth)

The in-orbit configuration is reached as soon as the top radiator cover is open.

The deployed envelope is then : L (Velocity) x W x H (Earth) 796 x 5 19 x 292 mm

2.1.2. Mechanical Interface Control Drawing

The AVHRR/3 instrument configuration and mechanical interfaces are given in the Mechanical
Interface Control Drawing, TBD.

The AVHRR/3 stowed and deployed configurations are illustrated in Figures 2.1/1,2.1/2 and 2.1/3.

2.1.3. Mass Properties

Mass

The mass properties of the AVHRR/3 instrument are given in the following table. The co-ordinate
system used is the Instrument Mounting Interface Reference Frame, Favurg , with the origin being at
the reference mounting hole location as defined in the Mechanica Interface Control Drawing, TBD (Cf.
drawing). The directions of the Favirr axes are the same as the Spacecraft Reference Frame Fs. The
AVHRR/3 centre of gravity location has been measured without the blankets.

Module Basic Mass Centre of Mass Location (£ 50 mm)
/Unit (= TBD kg) X AVHRR Y AVHRR Z AvHRR
(Sun) (Anti-velocity) (Zenith)
AVHRR/3 31.3 kg + 123.4 mm + 391.2 mm - 1184 mm
stowed (69 1b) (4.86in) (15.40 in) (4.66 in)
AVHRR/3 31.3 kg +122.7 mm + 391.2 mm -120.1 mm
Dep loved { (69 Ib) | (4.83in) (15.401n) 473 in) |

AVHRR/3 Mass Properties
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Moments of Inertia

The AVHRR/3 moments of inertia are as follows. The coordinate system used is the Instrument
Mounting Interface Reference Frame, Favurr, With the origin being a the reference mounting hole
location as defined in the Mechanica Interface Control Drawing, TBD (Cf. drawing). The directions of
the F avirr axes are the same as the Spacecraft Reference Frame Fs. The accuracy of these values is
within T'BD % of the total instrument moment of inertia for each axis.

Module Moments of Inertia (kg.m?)
[Unit Iy Ivy 127 Ixy Ixz Iyvz
AVHRR/3 Stowed TBD TBD TBD TBD TBD TBD
AVHRR/3 Deployed 7.904 1.717 7.997 TBD TBD TBD

AVHRR/3 Moments of Inertia

2.1.4. Instrument Induced Distur bances

214.1. Non Recurring Transient Events
Cooler Door Opening : the available data (0.14 Nms / 1.25 in.lb.sec over 0.1 sec) are to be clarified.

Scanning ramp-up (ramp-down) is TBD

214.2. Continuous and Recurring Transient Events

The AVHRR/3 scan motor rotates at a 360 rpm rate. This causes the IFOV to scan scenes from space,
through Earth, to Sun. The total uncompensated kinetic momentum of the instrument is :

- 0 on the X axis

- 0.27 Nms (38 in.oz.sec) on the Y axis (scenes are scanned from Space, through Earth, to Sun)
- O on the Z axus

The static and dynamic unbalance values on each axis are TBD.

Transient : TBD

2.1.4.3. Induced Disturbance Torque Effect

2.1.4.4. Flexible Modes
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215.  Fidd of View Definition
AVHRR/3 boresight is defined as the nadir direction. The instrument field of view definitionis:
- vertex (Cf. drawing)
- Spacecraft provision :
. cross-track scan plane: from 75 deg. anti-Sun-wards to 58 deg. Sunwards.

Thisisthe generd envelope for 2.5" margin + 55.5” Sunwards + 62.5" anti-Sun-wards
+7.5" anti-Sun calibration + 5" margin

Orbit plane: £ 2.5 deg.
AVHRR/3 field of view isillustrated in Figure 2.1.5/1.

2.2. INSTRUMENT MOUNTING ATTACHMENTS

22.1. Method
AVHRR/3 is mounted to the spacecraft balcony using 6 bolts passing through flanges.

The boalt size, length and torque required to mount the instrument are

Module / Unit Balt Size Length (mm) Torgue (Nm) Quantity

AVHRR/3 6

2.2.2. Reference Point (Hole)

The definition of the Reference Point / Hole for AVHRR/31s given in the Mechanical Interface, Control
Drawing. TBD (Cf. drawing).

2.2.3.  Mounting Surfaces

The mounting surface is on the nadir wall of the platform. The flamess of the mounting surface does not
exceed TBD mm in 100 mm. The surface roughness of the mounting surfaces are TBD pm. Each
mounting foot has an area of 645 mm? (TBC).

2.2.4. Materials

| The material of the AVHRR/3 baseplate is aluminium aloy. An alodyne 600 finish is applied to the
material at the mounting area The balcony is a 50 mm aummium honeycomb panel with CFRP facing
skins (TBC). GFRP stand-offs will be used between the AVHRR/3 mounting feet and the spacecraft
balcony.
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2.25 Interface Loads
The calculated interface loads induced by the AVHRR/3 instrument are :

Module / Unit Shear Tension Compression Moment
(N) (N) N) (Nm)

AVHRR/3 Baseplate

2.2.6.  Accessibility

AVHRR/3 connectors are located on the +X {METOP) side of the instrument. Special accessibility 1s
required by the use (TBC) of thermal targets for the whole spacecraft therma vacuum tests.

2.2.7.  Grounding Point

The locations of the grounding points on the AVHRR/3 instrument are defined in TBD.

23. POINTING

The pointing requirements ror the AVHRR/3 instrument are expressed at the Instrument Mounting
Interface Reference Frame Favirr

Absolute Pointing Error (Accuracy) : + 0.15 deg. (30)
Absolute Measurement Error (Knowledge) : + 0.10 deg. (30)
Absolute Rate Error (Rate) : + 0.005 deg./sec. (30}

24. ALIGNMENT

24.1. Optical Reference Cube

The position of the Optical Reference Cubeis given in the Mechanical Interface Control Dr awi ng, TBD
(Cf. drawing). The cube has two alignment surfaces of size 145 1.6 mm? which are viewed from the
spacecraft +X; and -Y axes and meet the requirements specified in the GICD.

The cube shall be covered with a cover in accordance with TBD prior to launch.

2.4.2.  Alignment Procedure

2.43. Co-Alignment

There is no requirement for co-alignment for AVHRR/3. Several other instruments have a requirement
to be co-aligned with AVHRR/3HIRS/3. AMSU-Al. AMSU-A2. MHS and IASI



Ref : MMS/MET/TN/160.94

MATRA MARCONI SPACE AVHRR/3 e September 1601

Page 24

2.5. STRUCTURAL DESIGN

251 Limit Loads

l The structural design analyses are TBD.

‘ 2.5.2. Quasi-Static Design L oads

25.3. Safety Factors
The calcul ated safety factors are TBD.

254, Dynamic Characteristics and Structural Mathematical M odel

The structural dynamic analyses are reported in TBD. The first natural frequency of the AVHRR/3
instrument is 108 Hz in its stowed configuration, this value having been established by both test and
analysis.

As this frequency is above the 100 Hz limit, no mechanical interface model is required.

2.4. MECHANISM S

2.6.1. Functional Description
AVHRR/3 contains two movable mechanisms :

| - the hysterisis synchronous motor of the scan mirror rotates at a constant 360 rpm rate. This causes the
IFOV to scan scenes from space, through Earth, to Sun.

- aone shot solenoid actuated by a spring driven deployment mechanism, to deploy the top cooler
cover.

2.6.2. Performances

The scanning mirror is alwayvs running and cannot be parked (synchronization problem). Hence the
mechanism shall be ON during Launch and degraded modes.

2.7. PYROS

None

2.8. INSTRUMENT APERTURE COVERS
2.8.1. Sensor Covers

2.8.2.  Removable Covers (Non-Flight |tems)

2.8.3.  Deployable Covers (Flight Items)
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3. THERMAL INTERFACE DESCRIPTIOK

3.1 INSTRUMENT THERMAL CONTROL CONCEPT

3.11.  Category

AVHRR/3 isa Category C instrument. Itsthermal control is autonomous with dedicated radiators on
the instrument side, save for the thermal control of its mounting plane which is controlled by the
platform.

The three thermal infra-red detectors are cooled by a two-stage passive radiant cooler. They are
mounted on a cold patch that has a 146 cm? (22.4 sg. in.) radiating area. This patch cools to 98 K with
no control power. During nominal operation its temperature is controlled at 105 K.

3.1.2.  Thermal Control Philosophy
Normal Operation

AVHRR/3 dissipates a continuous dissipation of TBD Watts and receives varying environmental heat
inputs of between TBD and TBD Watts. TBD Waitts is radiated to space from the cryogenic radiators,
TBD Watts is radiated from the optical areas (telescope. mirror) of the instrument and the radiator area
on the baseplate radiates TBD Watts. On TIROS thisradiator sizeis 210 sg. in., i.e. 0.136 m? (about
457 x 305 mm).

Heaters on the baseplate are used to maintain the instrument at a constant temperature. The heater
power is controlled by a circuit in the platform thermal control unit (TCU) which is turn controlled by
the platform using data from a thermistor on the AVHRR/3 baseplate. The heater power is reduced and
increased as the environmental heat inputs change to maintain the baseplate at a constant temperature
within + TBD deg. C in an obit. in an overdl range of between 15 and 20 deg. C.

A Sun shield on the balcony is used to prevent solar illumination of the baseplate radiator area and the
cryogenic radiator door. It has an interior high wnfra-red reflectance finish on its interior to reflect
radiation from the baseplate radiator to space.

Contingency Modes

During the contingency modes the instrument is switched off. The temperature of AVHRR/3 will be
maintained between 10 and 25 deg. C by surviva heaters which are controlled using thermostats with a
lower set point of 10 deg. C

3.2 INSTRUMENT TEMPERATURE REQUIREMENTS AND THERMAL CONTROL
BUDGETS
3.2.1 Temperature at Conductive Interface

Temperature Ranges

The operating. nonoperating and switch-on temperatures for the AVHRR/3 instrument are defined
below The Temperature Reference Point at which these temperatures apply is defined in TBD.
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Deg. C Operation Non-Operation Switch-On
AVHRR/3 Min. M ax. Min. Max. Min.
Acceptance +10 +30 . 0 +30 0
Qualification (TBC) +3 +30 | -5 +30 -5

Stability Requirements

The maximum rate of change in temperatures of the AVHRR/3 instrument measured at the Temperature
Reference Point shall be less than 2 deg. C / hour during operation. This requirement is not understood
as an instantaneous rate, but as a short term rate : the maximum alowable AT measured at the
Temperature Reference Point for any time period of 1 hour shall be less than 2 deg. C (TBC).

3.2.2. Radiative interfaces

The focal plane assembly radiator on the -Xavurr axis of the instrument requires a Gebhart factor of
greater than 0.98 (TBC) to space. Surfaces of other instruments may be permitted in the radiator field
of view provided that this Gebhart factor requirement is met. In that respect, the identified interactions
with HIRS/3 and IASI instruments are acceptable (TBC). This cryogenic radiator operates at a
temperature of 105 K.

The baseplate radiator requires a minimum radiation term to space of 4.115x10° w/K* (1125 sq. in.).
The spacecraft contractor shall ensure that there is no solar illumination of the AVHRR/3 cryogenic
radiator door during normal operation.

3.2.3. Heater Power Budgets

The heater power budgets for the AVHRR/3 instrument are :

Module Heater Power Budget (Watts)
/Unit Operating Operating Off Off
Hot Case Cold Case Cold Case Safe Mode
AVHRR/3 32.0 320 24.9 24.9

These heater powers are provided by the platform for the active therma control of the AVHRR/3

instrument baseplate

The resistance of the heaters is TBD

3.24. Instrument Thermal Dissipation

The dissipation of the AVHRR/3 instrument is constant throughout the orbit and is :

Module Thermal Dissipation (Watts)
/Unit Operating Operating Orbital Contingency /
Stand-by Average Safe Mode
AVHRR/3 N/A | 29.1 (TBQC) 29.1 (TBCQC) 0.0
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3.25.  Heat Exchange Budgets

The calculated heat transfer between the platform balcony and the AVHRR/3 instrument for different
casesare .

Conductive Heat Transfer

Module Conductive Heat Transfer (Orbit Average, Watts)
Nnit Operating Operating Off Off
Hot Case Cold Case Hot Case " Cold Case
AVHRR/3 <5 (TBC) <5 (TBC) <5 (TBC) <5 (TBC)

Operating Radiative Heat Transfer

Radiative Heat Transfer
Module (Orbit Average, Watts)
/Unit Hot Case Cold Case
AVHRR/3 Baseplate Radiator TBD TBD

3.2.6. Thermo-Elastic Interface

The AVHRR/3 instrument has an aluminium baseplate with a coefficient of thermal expansion of 25 x
10/ deg C (TBC). The interfacing structure for the AVHRR/3 instrument is aluminium honeycomb
with CFRP skins, with a coefficient of thermal expansion of 2.0 x 10/ deg. C(TBC).

3.3. THERMAL INTERFACES

33.L Thermal Interface Drawing

The therma interfaces are defined in Thermal Interface Drawing, TBD

3.3.2. Conductive Interfaces

The conductive interfaces are the 6 mounting feet which are defined in the Mechanical Interface Control
Drawing (TBD), and in § 2.2.3. GFRP stand-offs will be used between the AVHRR/3 mounting feet
and the spacecraft balcony.

The total thermal conductance between the AVHRR/3 instrument and the balcony is TBD W/K
The calculated temperatures at the AVHRR/3 conductive interfaces are TBD.

3.3.3. Radiative Interfaces

The external surfaces of the AVHRR/3 instrument. and the finishes used are given in the Thermal
interface Drawing (TBD). The main finishes are given in Figure 3.3/1 The baseplate radiator is not a
flat planar surface (TBC). The area of the baseplate used as a radiator is given in Figure 3.3/2.
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The thermo-optical properties of the finishes are given in the following table :
Surface/ Material Solar Absorptance Infra-Red
BOL EOL Emittance
Silver Teflon 0.09 TBD 0.76
Black Paint 0.96 TBD 0.91
GOLD 0.33 TBD 0.03
VDA (vacuum deposited ahuninium) 0.06 TBD 0.035
Aluminium Tape 0.25 TBD 0.04
Kapton (MLI ext.) 0.35 TBD 0.53
White Paint 0.22 TBD 0.90
Black Honeycomb (cal. targets) 0.98 TBD 0.99

A VHRR/3 Material Thermo-Optical Properties (TBC)
The radiative environmental temperatures for AVHRR/3 are TBD.

3.34. Therma Heat Capacity
The thermal heat capacity of AVHRR/3 is TBD JK.

3.3.5. Instrument Temperature M easur ement

2 thermistors. Location: TBD.

3.3.6. Thermal Mathematical Models

AVHRR/3 reduced modelling in SINDA/TRASYS is under progress and should be completed by
Januarv 1995,

3.4. THERMAL ENVIRONMENT CONDITIONS
Nominal Operations (Earth Pointing)

Assuming that the motor = till running, AVHRR/3 has no problem with viewing the Sun from its
optical aperture (a bad pos:::on of the mirror is then avoided).

Assuming a 105 K starting temperature. AVHRR/3 coolers and detectors can survive a 14 minute direct
Sun exposure.

The platform guarantees that there is no direct Sun illumination of the mounting plane radiator

Direct illumination of the top radiator and of the back of the Earth cover shall be avoided.

Safe Mode Operations (Sun Pointing)
The platform guarantees that there 1sno direct Sun illumination of the mountmg plane radiator.

The behaviour of the top radiator in safe mode (instrument OFF. scanning motor running) is TBD
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4. ELECTRICAL INTERFACE DESCRIPTION
4.1. POWER SUPPLY INTERFACES
Power Sources
AVHRR/3 requires to be power supplied with the following buses :
Power Bus Number of Goals TIROS Name
Interfaces
+ 28 V regulated power bus 2 One for the instrument primary Main regulated bus # 1
power
One for the scanning mechanism Main regulated bus #2
+ 10 V regulated power bus 1 One for commands and digital B Interface Bus
command verification telemetry

In addition, a connection with a heater power for the instrument baseplate shall be foreseen :

+ 28 V regulated heater | One for the active thermal control
power bus (instrument baseplate)

Normal operation of the instrument is guaranteed if the voltage remains in the range 27 V - 29.5 V.

Note that the power connection is not redunded on the instrument side (TBC).

Power Consumption and Modes

Basic Power Consumption LEOP Instr. |PLM Fix| PLM Deconta- | Commis-
ON Safe mination| sionning

+ 28 V regulated power bus :

Primary power Off 183 W  off Off 212W 6w

Scanning mechanism 81w 81w 81W 81W 81w 81W
+ 10 V regulated power bus OffTBC|TBD W/| OffTBC| Off TBC|TBD W|TBD W
TOTAL 8.1 w 264 W 8.1W 81W 20.3W 141 w

The active thermal control shall be included in the platform budget. The need is:

+ 28 V regulated power bus Off TBC 320W 249W 24.9 W TBD TBD
(TBC)  (TBC)  (TBC)

Note that the radiant cooler cover deployment requires 56.9 W This occurs only once for a period of
approximately 1 sec. (acquisition phase).
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42. COMMAND AND CONTROL INTERFACES

AVHRR/3 synchronously operates with reference to a 998.4 kHz clock. For operation of the scanner
motor during launch, the accuracy of this clock is not high : TBD.

30 pulse discrete commands (no level discrete command).

The duration of the pulse commands can be standardized at 60 ms.

4.3 SCIENCE DATA INTERFACES

Two science data flows are taken out of AVHRR/3 : a high resolution HR stream and a low resolution
LR stream.

AVHRR/3 is aradiometer with 6 channels but only 5 channels are operated at atime. Each of them
parallelly delivers10-bit word to the platform_ and the resulting 50 bits are named a sample.

Within one scan (i.e. 1/6 = 166.67 ms), AVHRR/3 delivers 271 samples of measurement data. The
apparent data rate is then 62 1.300 kbps.

These 103 550 hit data are encapsulated into one source packet of 12 944 octets and the resulting
source packet total length is 12 958 octets. The packetized data rate is then 621.984 kbps (high rate).

For the low rate format, three out of five channels are selected and a 10: 1 compression rate is applied
(TBC). The apparent data rate after compression is 37.278 kbps.

The 6213 hit data are encapsulated into one source packet of 777 octets and the resulting source packet
total length is 79 1 octets. The packetized data rate is then 37.968 kbps (low rate).

44. HOUSEKEEPING TELEMETRY

Andog housekeeping telemetry 22 (3 during launch)
Digital housekeeping telemetry (digital B) : 15
Active thermal control thermo-couple : |

Housekeeping acquisition is done in a 3.2 sec. cycle on TIROS. This could be extended to e.g. 16 sec.

4.5. CONNECTORS AND HARNESS

4.5.1.  Connectors Used at Spacecraft Interfaces

4.52. Connectors Used for inter-Instrument Unit Interface

45.3. EMC Aspects

4.54. Cable Harness
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5. EMC/ RFC INTERFACE DESCFUPTION

6. CLEANLINESS AND SPACE ENVIRONMENT DESIGN CONSTRAINTS

6.1. CLEANLINESS REQUIREMENTS AND CONTAMINATION CONTROL

Contamination witness mirror : TBD.

6.2. RADIATION ENVIRONMENT
6.2.1.  Radiation Deposit Dose

6.2.2.  Single Event Upset (SEU) and Latch-Up

6.3. SPACE ENVIRONMENT CONSTRAINTS
6.3.1. Meteoroid and Space Debris

6.3.2.  Atomic Oxygen
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7. INSTRUMENT DESIGN VERIFICATION DESCRIPTION

7.1 TESTING

7.2. TEST REQUIREMENTS

7.2.1.  Electrical Functional Test Description

7.2.2. EMC Test Description

7.23. Mechanical and Structural Test Description

7.2.3.1. Quasi-Static Test

7.2.3.2. Dynamic Model Validation
N/A (AVHRR/3 first natural frequency is above 100 Hz).

7.2.3.3. Vibration Tests

AVHRR/3 is the result of an evolution of instruments AVHRR/2 was qudified to levels much higher
that the values used for AVHRR/3. Two alternatives are possible :

- AVHRR/3 could claim that the qualification levels of AVHRR/2 cover AVHRR/3. In this case
AVHRR/3 for METOP will need only acceptance testing according to the METOP GICD rules.

- AVHRR/3 is different to AVHRR/2 and cannot claim previous qudlification. In this case AVHRR/3
will need qudification testing as defined in METOP GICD.

If the path of only acceptance by METOP is chosen, it will be necessary to provide documentation that
proves that the differences between AVHRR/2 and /3 are small enough to justify this approach. It will
be necessary to provide documentation detailing the mechanical qudification of the AVHRR/2.

We propose to indicate the resulting test programmes for AVHRR/3 that will result in both cases.

Sinus or Burst

Note : AVHRR/3 first natural frequency is 108 Hz

Status on NOAA Levels

AVHRR/2 was sinus qualified to 11.5 g thrust axis and 7.5 g in both lateral axes.

For AVHRR/3, and according to NOAA documentation. sinus test is not necessary, but a qualification
bursr test shall be conducted by applying15.55 g for the AVHRR/3 in the three axes. An acceptance
Lecmnt tace chall ks nanducted ho annhvine 12 4 ¢ for the AVHRR/3 in the three axes
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METOP Required Levels

The sinus level test of AVHRR/2 does not wver the sinus profile requested in the METOP GICD (15 g
in the three axes) ; then the AVHRR/2 sinus test cannot be claimed as qualification for METOP.
However the level of the burst test requested by NOAA for AVHRR/3 is larger than 13 g.

Note the discrepancy in the duration : 0.5 s for NOAA versus the 1 s. requested by METOP GICD. The
NOAA test frequency shall be clarified.

Random Vibrations
Status on NOAA Levels

AVHRR/2 was qualified with a constant level of 0.085 g rms from 20 to 2000 Hz. This produces a total
of 12.9 g ms.

As per NOAA documentation, for AVHRR/3, the qualification levels are the following :

Frequency (Hz) 20to 60 60 to 1000 1000 o 2000

Power Density +8 dB/Oct 0.04 g*Hz -3dB/Oct.

Total 8.12 grms. Duration 1 min/axis

The acceptance levels are identical to qudification levels.

METOP Required Levels
The application of the METOP GICD levels produces for an AVHRR/3 of 3 1 kg the following levels:

Quadlification Levels

| Frequency (Hz) 20 to 100 | 10010400 | 400 to 2000

I Power Density +3 dB/Oct ‘ 0.079 g*/Hz l -3dB/Oct.

The conclusion 1s that the Quadlification Levels required by METOP for AVHRR/3 are below the
Qualification Levels of AVHRR/2. If AVHRR/3 can claim that it has been qualified — through
AVHRR/2 — to levels more stningent than METOP ones, it will need only acceptance testing. The
METOP required levels are then :

Acceptance Levels

Frequency (Hz) 20 to 100 100 to 400 400 to 2000

Power Density +3 dB/Oct 0.0505 g*/Hz -3 dB/Oct.

These levels are above AVHRR/3 NOAA specified qualification levels :so — if previous qualification
is claimed — AVHRR/3 for METOP should increase the levels to the Acceptance Levels of the
previous table.

If AVHRR/3 does not claim coverage by AVHRR/2 levels. then the above mentioned METOP
qualification levels apply.
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Levels can be seen in the graphic below :

AVHRR (31 kg) Random Vibration

AVHRR-2 Qual —_—
METOP Qual oo ot
AVHRR-3 Accept & Qual
METOP Accept
0.5
ol _ 0.085
_—-?.'Am
P o —
0.05 s : N
LA 0.04 ~ L L
PSD (g*/Hz) V _
0.01 17/
Fd
y A
0.005
-/
Y
0.001
10 50 100 500 1000 2000

Frequency (Hz)

For simplification the graphs only include the levels for the perpendicular directions nor the lateral ones.

7.2.3.4. Acoustic Test

7.2.4.  Thermal Test Description
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8. GROUND SUPPORT EQUIPMENT DESCRIPTION

8.1. MECHANICAL GROUND SUPPORT EQUIPMENT

8.2. ELECTRICAL GROUND SUPPORT EQUIPMENT

For testing at spacecraft level, AVHRR/3 will provide one Portable Test Unit (PTU) and two thermal
vacuum targets (simulating space and Earth viewing) and their respective controllers. This equipment
will operate at both 110 and 220 VAC, 50-60 Hz.

The possibility to have semi-automated test sequences with the PTU (or equivalent) is under evauation.
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9. GROUND OPERATION DESCRIPTION

9.1. MODEL PHILOSOPHY

9.1.1.  Instrument Structural Model (SM)

None.

9.1.2. Instrument Engineering Mode (EM)

None.

9.1.3. Instrument Proto-Flight Model (PFM)

None.

9.14.  Instrument Flight Model (FM)
2 Flight Models are to be delivered for METOP.

9.15  Flight Spare Model

9.2. DELIVERY TO THE AIV SITE

9.3. INSTRUMENT INTEGRATION
The contamination witness mirror shall be removed prior to vibration testing and launch
The dignment cubes shall be removed before launch.

On TIROS platform, an end-to-end testing at system level is performed in the thermal vacuum chamber.
For AVHRR/3, stimuli are required for crvogenic cooling and to simulate deep space and Earth scene
conditions. The applicability to the METOP satellite 1s TBD. Note that only the infra-red channels
require these stimuli, as the visible channels are optically smulated at ambient conditions.

94. PURGING REQUIREMENTS

95. GROUND ENVIRONMENTAL CONDITIONS

9.6. LAUNCH OPERATIONS
AVHRR/3 shall be powered on during the launch phase (Cf. § 4.1).

Telemetry shall be acquired from AVHRR/3 prior to launch for health status (rationale TBD), and
P TR L /e R 4 AN bt dirert doun-link with the eround 1s not required.
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10. FLIGHT OPERATION DESCRIPTION

10.1. OVERVIEW
AVHRR/3 is continuously on along the orhit (duty cycle 100%).

Commissioning and calibration : TBD

10.2. ORBITAL PARAMETERS

10.2.1. Operational Orbit

10.2.2. Pointing Characteristics

10.3. MISSION OPERATION PHASES

10.4. OPERATION CONSTRAINTS AND RESPONSIBILITIES

10.4.1. Commandability

10.42. Observability

10.4.3. Information Provided by the Platform

Once switched on, AVHRR/3 nominally proceeds without any requirement for software or parameters
update but the channel selection.

Automatic Channel Selection

The instrument requires a dav/mght mode switching from the platform, in order to use the channd 3A
during the day (cloud clearing purpose) and the channel 3B at night (for cloud / surface temperature
measurement purpose). Because of the swath, it does not really matter whether this signal generated
twice per orbit occurs at the day/night terminator of the spacecraft or at the sub-satellite point.

10.5. INSTRUMENT OPERATION MANUAL

The initial decontamination period lasts two weeks Subsequent decontamination is approximately equal
to one week duration.

AVHRR/3 requires to go regularly (every TBD months) into this decontamination mode.
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11. PRODUCT ASSURANCE AND RELIABILITY

Reliability

Design Lifetime: 3 years
Reliability : Not specified
Flight Experience: more than 5 years

12. PROGRAMME AND SCHEDULE
AVHRR/3 is scheduled for a first flight on NOAA-K in 1995,
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INSTRUMENT INTERFACE CONTROL DOCUMENT (ICD) OUTLINE

HIRS/3
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1. GENERAL

11. PURPOSE OF THE DOCUMENT

This document is the HIRS/3 Instrument Interface Control Document Outline. It deds with interface
definition from the instrument to the METOP platform and with HIRS/3 responses to the generic
METOP Generd Instrument Interface Control Document (GICD).

12.  INSTRUMENT PRESENTATION

The High Resolution Infra-Red Sounder HIRS/3, scans the Earth surface in twenty spectral bands in the
range of 0.69 - 14.95 microns. It provides data for temperature - atitude profiles, moisture content,
cloud height and surface albedo.

HIRS/3 has an instant foot print in nadir of 20 km. Scanning is crosstrack with a total field of view of
+ 49.5 deg. about nadir. The instrument uses an internal step scan mirror which scans in 1.8 deg.
increments at a set rate of 10 steps per second (the mirror steps in less than 35 msec, then holds at each
position while the 20 filter segments are sampled).

The short-wave and long-wave infrared detectors are mounted on a passive radiator and operate a a
stabilized 100 K temperature. An Earth shield on the cooler door assembly insulates the door from
Earth direction thermal input. The door is released after the initial orbital outgas period. If there are
indications of subsequently contaminate accumulation, a door-open outgas procedure can be performed
by applyving power to the heaters located on both stages of the radiant cooler. During this procedure, the
cooler temperature rises to approximately 300 K.

The instrument sensitivity (noise equivalent spectral radiance, NEANT, in mW/ (m2 ST cm-l) ) are
iliustrated in Table1.2/1.

Scan Twpe: Step Starer
* Scan Rate(s) : 6.4
| IFOV (deg) : 0.69 (circular)
Sampling Interval (deg.) : 1.8
Earth View Pixelsper Scan: 56
Swath (deg. with respect to the nadir direction) : + 49.5 deg
Synchronization with AMSU A (8 s repeat time): TBD.

13. APPLICABLE AND REFERENCE DOCUMENTATION
’ Applicable Documentation

General Instrument Interface Control Document - GICD
Ret MMS/MET/SPE/JLD/139.94. Iss. 2. dated Sept. 94

Reference Documentation

Unique Interface Specification for HIRS/2 (applicable to HIRS/3)
Ref 1S-2285780 (MET0029). dated October 1991. Rev G
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Performance Specification for the NOAA-N, N'and METOP-1 HIRS/3
Ref. S-480-28.2 (MET0153), dated March 1993, Rev. C

Performance Assurance Requirements for the NOAA-K, L & M AVHRR/3 and HIRS/3
Ref. S480-29.1 (METO0154), dated March 1990, Rev. G

Outline Drawing HIRS/21 and HIRS/3 Instruments
Ref. 8 129882 (MET0506), dated March 1993, Rev. C

HIRS/3 Therma Interface Drawing
Ref. 8 129935 (MET0505), dated March 1993, Rev. A

Channel Wavelength (pm) Sensitivity (NEANT) ]
1 14.95 3.00
2 14.71 0.67
3 14.49 0.50
4 14.22 0.31
S 13.97 0.21
6 13.64 0.24
7 13.35 0.20
8 1111 0.10
9 9.71 0.15
10 12.47 0.15
11 7.33 0.20
12 6.52 0.20
13 4.57 0.006
14 4.52 0.003
15 | 441 - 0.004
16 4.45 0.004
17 413 0.002
18 4.00 0.002
19 3.76) 0.001
20 0.69 0.10% abedo

Figure 1.2/1: HIRS/3 Channel Allocation and Sensitivity
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2. MECHANICAL INTERFACE DESCRIPTION

2.1. INSTRUMENT PHYSICAL CHARACTERISTICS

2.1.1. Module/ Unit I dentification

HIRS/3 consists of a single unit. The Part Number and Identification Code of the HIRS/3 instrument
are:

PARTNO: TBD
ID CODE: TBD

The location of the labels giving these Part Numbers and Identification Codes are defined in the
Mechanica Interface Control Drawing.

The stowed envelope is : L (Veocity) x W x H (Earth) 677 X 469 x 406 mm.
The in-orbit configuration is reached as soon as the top radiator cover is open.

The deploved configuration is then : L (Velocity) x W x H (Earth) 677 X 629 x 406 mm
212 Mechanical Interface Control Drawing

The HIRS/3 instrument configuration and mechanica interfaces are given in the Mechanica Interface
Control Drawing, TBD.

The HIRS/3 stowed and deployed configurations are illustrated in Figures 2.1/1and 2.1/2

213 Mass Properties
Mass

The mass properties of the HIRS/3 instrument are given wn the following table. The co-ordinate system
used 1sthe Instrument Mounting Interface Reference Frame, Fywrs , with the origin being at the
reference mounting hole location as defined in the Mechanical interface Control Drawing, TBD (Cf.
drawing). The directions of the Fymgs axes are the same as the Spacecraft Reference Frame Fs. The
HIRS/3 centre of gravity location in the deployed configuration has been measured.

Module Basic Mass Centre of Mass Location (£ 5 mm)
/Unit (= TBD kg) XHirs YHirs Zyrs
(Sun) (Anti-velocity) (Zenith)
HIRS/3 Stowed 33.1kg (73 1b) + 1359mm +321.4 nun -141.5 mm
HIRS/3 Deployed 33.1kg +134.9 mm +310.9 mm -143.5 mm
(731b) (5.31 in) (12.24 in) (5.65in)

HIRS/3 Mass Properties
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2. MECHANICAL INTERFACE DESCRIPTION

2.1. INSTRUMENT PHYSICAL CHARACTERISTICS

2.1.1. Module/ Unit I dentification

HIRS/3 consists of a single unit. The Part Number and Identification Code of the HIRS/3 instrument
are:

PARTNO : TBD
ID CODE : TBD

The location of the labels giving these Part Numbers and Identification Codes are defined in the
Mechanica Interface Control Drawing.

The stowed envelope is : L (Veocity) x W x H (Earth) 677 x 469 x 406 mm.
The m-orbit configuration is reached as soon as the top radiator cover is open.

The deployed configuration is then : L (Velocity) x W x H (Earth) 677 x 629 x 406 mm
2.1.2.  Mechanical Interface Control Drawing

The HIRS/3 instrument configuration and mechanical interfaces are given in the Mechanica Interface
Control Drawing, TBD

The HIRS/3 stowed and deployed configurations are illustrated in Figures 2.1/1and 2.1/2

2.1.3. Mass Properties
Mass

The mass properties of the HIRS/3 instrument are given in the following table. The co-ordinate system
used Is the Instrument Mounting Interface Reference Frame, Fyprs , with the ongin being at the
reference mounting hole location as defined in the Mechanical Interface Control Drawing, TBD (Cf.
drawing). The directions of the Fuirsaxes are the same as the Spacecraft Reference Frame Fs. The
HIRS/3 centre of gravity location in the deploved configuration has been measured.

Module Basic Mass Centre of Mass Location (£ 5 mm)
/Unit (£ TBD kg) XHIrs YHirs Zyirs
(Sun) (Anti-velocity) {Zenith)
HIRS/3 Stowed 33.1 kg (73 1b) + 1359 mm +321.4 mm -141.5 mm
{ HIRS/3 Deployed 33.1 kg + 1349 mm + 310.9 mm -143.5 mm
(73 1b) (5.31in) (12.24 in) (5.651n)

HIRS/3 Mass Properties
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Moments of Inertia

The HIRS/3 moments of inertia are as follows. The co-ordinate system used is the Instrument Mounting
Interface Reference Frame, Fyrs, With the origin being at the reference mounting hole location as
defined in the Mechanical Interface Control Drawing, TBD (Cf. drawing). The directions of the Fygrs
axes are the same as the Spacecraft Reference Frame Fs. The accuracy of these values is within TBD %
of the total instrument moment of inertia for each axis

Module Moments of Inertia (kg.m?)

[Unit x| I | lz | I | ke | I
HIRS/3 stowed TBD | TBD | TBD | TBD | TBD | TBD
HIRS/3 Deployed 5.522 1.867 5.487 TBD TBD TBD

HIRS/3 Moments of Inertia

2.1.4. Instrument Induced Disturbances

2141 Non Recurring Transient Events
Cooler Door Opening TBD
Filter Chopper Drive Ramp-Up : TBD
2142 Continuous and Recurring Transient Events

HIRS/3 step scanning (scenes are scanned from Sun, through Earth, to space) is uncompensated. The
total uncompensated kinetic momentum is :

- 0.220 Nms (2 in.lb.sec) on the X axis
- 0.007 Nms (1 in.oz.sec) on the Y axis
- 0.007 Nms (l1n.oz.sec) on the Z axis

The scan axis torque and the static and dynamic unbalance values on each axis are TBD

Transient : TBD

2143 Induced Disturbance Torque Effect

2.14.4. Flexible Modes

2.15. Field of View Definition

HIRS/3 boresight is defined as the nadir direction. The instrument field of view definition is
-vertex : Cf. drawing

- Spacecraft provision :

. cross-track scan plane: from 73 deg. anti-Sun-wards to 5 1 deg. Sunwards.
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This is the genera envelope for 1.3° margin + 49.5” Sunwards + 49.5° anti-Sun-wards + 2 1.6’
anti-Sun calibration + 1.5” margin

Orbit plane: = 2.0 deg.
HIRS/3 field of view isillustrated in Figure 2.1.5/1.

2.2. INSTRUMENT MOUNTING ATTACHMENTS

22.1.  Method
The HIRS/3 instrument is mounted to the spacecraft balcony using six mounting feet.

The bolt size, length and torque required to mount the instrument are:

Module/ Unit Bolt Size Length (mm) Torque (Nm) Quantity

HIRS/3 6

2.2.2. Reference Point (Hole)

The definition of the Reference Point / Hole for HIRS/3 is given in the Mechanical Interface Control
Drawing, TBD (Cf. drawing,).

22.3. Mounting Surfaces

The mounting surface is on the nadir wall of the platform. The flatness of the mounting surface does not
exceed TBD mm in 100 mm. The surface roughness of the mounting surfaces are TBD pm. Each
mounting foot has an area of 645 mm? (TBC).

224, Materials

The material of the HIRS/3 baseplate is aluminium alloy. An alodyne 600 finish is applied to the
material a the mounting area. The balcony is a 50 mm aluminium honeycomb panel with CFRP facing
skins (TBC). GFRP stand-offs will be used between the HIRS/3 mounting feet and the spacecraft
balcony.

2.2.5. Interface Loads

The calculated interface loads induced by the HIRS/3 instrument are:

Module / Unit Shear Tension Compression M oment
(N) (N) (N) (Nm)

HIRS/3 Baseplate

2.2.6.  Accesshility

HIRS/3 connectors are located on the +X (METOP) side of the instrument. Special accessibility is
required by the use of thermal targets for the whole spacecraft thermal vacuum tests {TBC).
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This isthe general envelope for 1.5° margin + 49.5” Sunwards + 49.5' anti-Sun-wards + 21.6”
anti-sun calibration + 1.5" margin

. Orbit plane: + 2.0 deg
HIRS/3 fidld of view isillustrated in Figure 2.1.5/1.

2.2. INSTRUMENT MOUNTING ATTACHMENTS

22.1. Method
The HIRS/3 instrument is mounted to the spacecraft balcony using six mounting feet.

The bolt size, length and torque required to mount the instrument are :

Module/ Unit Bolt Size Length (mm) Torque (Nm) Quantity

HIRS/3 6

222 Reference Point (Hole)

The definition of the Reference Point / Hole for HIRS/3 is given in the Mechanical Interface Control
Drawing. TBD (Cf. drawing).

223. Mounting Surfaces

The mounting surface is on the nadir wall of the platform. The flatness of the mounting surface does not
exceed TBD mm in 100 mm. The surface roughness of the mounting surfaces are TBD pm. Each
mounting foot has an area of 645 mm? (TBC).

2.2.4. Materials

The matenal of the HIRS/3 baseplate is aluminium alloy. An alodyne 600 finish is applied to the
material at the mounting area. The balcony is a 50 mm alumimum honeycomb panel with CFRP facing
skins (TBC). GFRP stand-offs will be used between the HIRS/3 mounting feet and the spacecraft
balcony.

2.2.5. Interface Loads

The calculated interface loads induced by the HIRS/3 instrument are :

Module / Unit Shear Tension Compression Moment

N N) MN) (Nm)

HIRS/3 Baseplate

2.2.6. Accessibility

HIRS/3 connectors are located on the +X (METOP) side of the instrument. Special accessibility is
required by the use of thermal targets for the whole spacecraft thermal vacuum tests (TBC).
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2.2.7.  Grounding Point

The locations of the grounding points on the HIRS/3 instrument are defined in TBD

2.3. POINTING

The pointing requirements for the HIRS/3 instrument are expressed at the Instrument Mounting
Interface Reference Frame Furs

Absolute Pointing Error (Accuracy) : + 0.15 deg. (39)
Absolute Measurement Error (Knowledge) : + 0.10 deg. (30)
Absolute Rate Error (Rate) : + 0.005 deg./sec. (30)

24. ALIGNMENT

24.1. Optical Reference Cube

The position of the Optical Reference Cube is given in the Mechanica Interface Control Drawing,
| TBD. The cube has two aignment surfaces of size 145 1.6 mm?2 which are viewed from the spacecraft
+Xs and -Y's axes and meet the requirements specified in the GICD.

The cube shall be covered with a cover in accordance with TBD prior to launch.

I 2.4.2.  Alignment Procedure

24.3. Co-Alignment

The co-alignment requirements are expressed behveen the Instrument Mounting Interface Reference
Frames (Fy ) of each instrument

HIRS/3 shall be co-aligned with AVHRR/3 to within £ 0.05 deg. (3a).

25. STRUCTURAL DESIGN

251 Limit Loads

The structural design analyses are TBD

252 Quasi-Static Design Loads

2.5.3. Sdfety Factors

! The calculated safetv factors are TBD
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The structural dynamic analyses are reported in TBD. The first natural frequency of the HIRS/3
instrument is 188 Hz in its stowed configuration, this value having been established by both test and

analysis.

As this frequency is above the 100 Hz limit, no mechanica interface model is required.

2.6.

26.1

MECHANISMS

Functional Description

HIRS/3 has three mechanisms

- scan mirror drive : 1.8 deg. stepper motor, 0.1 s. step increment
- chopper / filter wheel : hysteresis synchronous motor at 600 rpm

- door : spring loaded hinges with a redundant solenoid actuated cam. It is a release only mechanism.

2.6.2.

2.7.

None.

2.8.

281

2.8.2.

2.8.3.

Performances

PYROS

INSTRUMENT APERTURE COVERS

Sensor Covers

Removable Covers (Non-Flight Items)

Deployable Covers (Flight Items)
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3. THERMAL INTERFACE DESCRIPTION

3.1 INSTRUMENT THERMAL CONTROL CONCEPT

3.1.1 Category

HIRS/3 is a Category C instrument. Its therma control is autonomous with dedicated radiators on the
ingtrument side, save for the therma control of its mounting plane which is controlled by the platform.

3.1.2. Thermal Control Philosophy
Normal Operation

HIRS/3 dissipates a continuous dissipation of TBD Watts and receives varying environmental heat
inputs of between TBD and TBD Watts. TBD Waitts is radiated to space from the cryogenic radiators,
TBD Watts is radiated from the optical areas (telescope, mirror) of the instrument and the radiator area
on the baseplate radiates TBD Watts. On TIROS this radiator size is 127 sq.in., i.e. 0.82 m? (about
266 x 308 mm).

Heaters on the baseplate are used to maintain the instrument at a constant temperature. The heater
power is controlled by a circuit in the platform thermal control unit (TCU) which is turn controlled by
the platform using data from a thermistor on the HIRS/3 baseplate. The heater power is reduced and
increased as the environmental heat inputs change to maintain the baseplate a a constant temperature
within = TBD deg. C in an obit, in an overall range of between 15 and 20 deg. C.

A Sun shield on the balcony is used to prevent solar illumination of the baseplate radiator area and the
crvogenic radiator door It has an interior high infra-red reflectance finish on its interior to reflect
radiation from the baseplate radiator to space. Some additional shielding is provided on the PLM to
prevent solar illumination of the HIRS/3 door (TBC).

Contingency M odes

During the contingency modes the instrument is switched off. The temperature of HIRS/3 will be
maintained between 10 and 25 deg. C by survival heaters which are controlled using thermostats with a
lower set point of 10 deg. C.

3.2. INSTRUMENT TEMPERATURE REQUIREMENTS AND THERMAL
CONTROL BUDGETS

3.2.1. Temperature at Conductive Interface

Temperature Ranges

The operating, non-operating and switch-on temperatures for the HIRS/3 instrument are defined below.
The Temperature Reference Point a which these temperatures apply is defined in TBD.
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Deg. C Operation Non-Operation Switch-On
HIRS/3 Min. Max. Min. Max. Min.
Acceptance +5 +25 -10 +30 -10
Quadlification (TBC) 0 +30 -15 +30 -15

CAUTION : The HgCDTE long-wave detector is subject to deterioration at temperatures above 30
deg. C.

Stability Requirements

The maximum rate of change in temperatures of HIRS/3 instrument measured at the Temperature
Reference Point shall be less than 5 deg. C / hour during operation. This requirement is not understood
as an instantaneous rate, but as a short term rate : the maximum allowable AT measured at the
Temperature Reference Point for any time period of 1 hour shall be less than 5 deg. C (TBC).

3.2.2. Radiative Interfaces

The focal plane assembly radiator on the -Xurs axis of the instrument requires a Gebhart factor of
greater than 0.97 (TBC) to space. Surfaces of other instruments may be permitted in the radiator field
of view provided that this Gebhatt factor requirement is met. In that respect, the identified interaction
with the LASI instrument is acceptable (TBC). This cryogenic radiator operates at a temperature of
100 K.

The baseplate radiator requires a minimum radiation term to space of 1 92x10° w/K* (52.5sq.in.).

The spacecraft contractor shall ensure that there is no solar illumination of the HIRS/3 cryogenic
radiator door during normal operation.

3.2.3. Heater Power Budgets
The heater power budgets for the HIRS/3 instrument are:
Module Heater Power Budget (Watts)
[Unit Operating Operating Off Off
Hot Case Cold Case Cold Case Safe Mode
HIRS/3 15.0 15.0 TBD TBD

These heater powers are provided by the platform for the thermal control of the HIRS/3 instrument

baseplate.

The resistance of the heatersis TBD

3.24.

Instrument Therma Dissipation

The dissipation of the HIRS/3 instrument is constant throughout the orbit and is :

Module Thermal Dissipation (Watts)
/Unit Operating Operating Orbital Contingency |
Stand-by Average Safe M ode
HIRS/3 N/A 25.1 (TBC) 25.1 (TBQC) 00
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3.2.5. Heat Exchange Budgets
The calculated heat transfer between the bacony and the HIRS/3 instrument for different cases are:

Conductive Heat Transfer

Module Conductive Heat Transfer (Orbit Average, Watts)
/Unit Operating Operating Off Off
Hot Case Cold Case Hot Case Cold Case
HIRS/3 <5 (TBC) <5 (TBC) <5 (TBC) <5 (TBC)

Operating Radiative Heat Transfer

Radiative Heat Transfer
Module (Orbit Average, Watts)
/Unit Hot Case Cold Case
HIRS/3 Baseplate Radiator TBD TBD

3.2.6. Thermo-Elastic Interface

The HIRS/5 instrument has an aluminium baseplate with a coefficient of thermal expansion of 25 x 10°
/ deg. C (TBC). The interfacing structure for the HIRS/3 instrument is aluminium honeycomb with
CFRP skins, with a coefficient of thermal expansion of 2.0 x 10" / deg. C. (TBC).

3.3. THERMAL INTERFACES

3.3.1. Thermal Interface Drawing

The thermal interfaces are defined in Thermal Interface Drawing, TBD

3.3.2. Conductive Interfaces

The conductive interfaces are the 6 mounting feet which are defined in the Mechanical Interface Control
Drawing (TBD), and in § 2.2.3. GFRP stand-offs will be used between the HIRS/3 mounting feet and
the spacecraft balcony.

The total thermal conductance between the HIRS/3 instrument and the balcony is TBD W/K.
The calculated temperatures at the HIRS/3 conductive interfaces are TBD.

3.3.3. Radiative Interfaces

The external surfaces of the HIRS/3 instrument. and the finishes used are given in the Thermal Interface
Drawing (TBD). The HIRS/3 thermal coatings are illustrated in Figure 3.3/1. The baseplate radiator is
not a flar planar surface (TBC) The area of the baseplate used as a radiator is given in Figure 3.3/2.
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Figure 3.3/1 : HIRS/3 Thermal Finishes

0

520 mm

m "

ALL DIMENSIONS ARE TBC (DRAWTNG INCOMPLETE)

Figure 3.3/2: HIRS/3 Baseplate Radiator Area
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The thermo-optical properties of the finishes are given in the following table :

Surface/ Material Solar Absorptance Infra-Red

BOL EOL Emittance
| siver Teflon 0.09 TBD 0.76
Black Paint 0.96 TBD 0.91
Gold 0.33 TBD 0.03
VDA (vacuum deposited aluminium) 0.06 TBD 0.035
Aluminium Tape 0.25 TBD 0.04
Kapton (MLI ext) 0.35 TBD 0.53
white Paint 0.22 TBD 0.9
Black Honeycomb (cal. targets) 0.98 TBD 0.99

HIRS/3 Material Thermo-Optical Properties (TBC)

The radiative environmental temperatures for HIRS/3 are TBD.

3.3.3. Thermal Heat Capacity
i The thermal heat capacity of HIRS/3is TBD J/K.

3.35. Instrument Temperature M easurement

3.3.6. Thermal Mathematical Models

HIRS/3 reduced modelling in SINDA/TRASYS is under progress and should be completed by January
1995,

3.4. THERMAL ENVIRONMENT CONDITIONS
Nominal Operations (Earth Pointing)

HIRS/3 scan mirror can be parked at interna calibration target position, to protect the optics from
direct Sun illumination from the mstrument optical aperture.

Assuming a 105 K starting temperature, HIRS/3 coolers and detectors can survive a 14 minute direct
Sun exposure.

The platform guarantees that there is no direct Sun illumination of the mounting plane radiator.
Direct illumination of the top radiator and of the back of the Earth cover shall be avoided
Safe Mode Operations (Sun Pointing)

The platform guarantees that there 1s no direct Sun illumination of the mounting plane radiator.

The behaviour of the top radiatorin safe mode (instrument OFF, scanning motor running or not) is
TBD.
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4. ELECTRICAL INTERFACE DESCRIPTION
4.1. POWER SUPPLY INTERFACES
Power Sources
HIRS/3 requires to be power supplied with the following buses :
Power Bus Number of Goals TIROS Name
Interfaces
+ 28 V regulated power bus 4 One for the instrument primary Main regulated bus
power
One for the scanning mechanism Pulse load bus#1
One for the filter chopper and Pulse load bus #2
internal outgas and filter housing
heaters
One for the temperature sensors Switched telemetry bus
when the instrument is off
+ 10 V regulated power bus 1 One for commands and digital B Interface Bus
B command verification telemetry

In addition, a connection with a hearer power for the instrument baseplate shall be foreseen :

+ 28 V regulated heater
power bus

Nor mal

!

Power connection redundancy : TBD

Power Consumption and Modes

One for the active thermal control

(instrument baseplate)

operation of the instrument is guaranteed if the voltage remains in the range 27 V - 29.5 V.

Basic Power Consumption LEOP Instr. |PLM Fii | PLM Outgas-
ON Safe sing

+ 28 V regulated power bus :
Primary power Off 81 W Off Off 81w
Scanning mechanism gOW 80W 80w 80W 8.0W
Filter Chopper. Heaters.. Off 6.6 W off Off 270 W
Temperature | 003 W OTBC |OffTBC |OffTBC| OTBC

l TBC

+ 10 V regulated power bus iOff TBC | 01w iOff TBC | Off TBC| 01 w
TOTAL | 803 w | 228 w [80W | 8ow | 432w
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The active thermal control shall be included in the platform budget. The need is :

+ 28 V regulated power bus Off TBC 15.0W TBD TBD TBD
(TBC)

4.2. COMMAND AND CONTROL INTERFACES

HIRS/3 synchronously operates with reference to a 1.248 MHz clock (master clock) and a 1 Hz clock
Two synchronization signals are provided to HIRS/3:

- amaor frame synchronization pulse, every 32 sec.

- a 256 sec. calibration pulse.

26 pulse discrete commands (no level discrete command).

The duration of the pulse commands can be standardized at 60 ms.

4.3 SCIENCE DATA INTERFACES

8.320 kHz clock
Data enable signa
Digital A data interface

On TIROS, during one scan (i.e. 6.4 sec.), HIRS/3 generates 64 elements of 288 bit each (18 pairs of
8 hit words) The raw data rate is then 2.880 kbps.

However HIRS/3 generates 2304 octets per scan, which are encapsulated into one source packet. The
resulting source packet total length is then 23 18 octets. The source packetized data rate is then
2.8975 Kkbps.

4.4. HOUSEKEEPING TELEMETRY

Analog housekeeping telemetry : 14 (2 during launch)
Digital housekeeping telemetry (digital B) : 14

Switched telemetrv bus thermustor interface 2

Active therma control thermocouple : |

4.5. CONNECTORS AND HARNESS

4.51. Connectors Used at Spacecraft Interfaces

4.5.2. Connectors Used for Inter-Instrument Unit Interface

45.3. EMC Aspects

4.5.4. Cable Harness
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5. EMC / RFC INTERFACE DESCRIPTION

6. CLEANLINESS AND SPACE ENVIRONMENT DESIGN CONSTRAINTS

6.1. CLEANLINESS REQUIREMENTS AND CONTAMINATION CONTROL

6.2. RADIATION ENVIRONMENT
6.2.1. Radiation Deposit Dose

6.2.2.  Single Event Upset (SEU) and Latch-Up

6.3. SPACE ENVIRONMENT CONSTRAINTS
6.3.1.  Meteoroid and Space Debris

6.3.2.  Atomic Oxygen
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7. INSTRUMENT DESIGN VERIFICATION DESCRIPTION

71. TESTING

7.2. TEST REQUIREMENTS

7.2.1. Electrical Functional Test Description

7.2.2. EMC Test Description

7.2.3. Mechanical and Structural Test Description

7.23.1 Quasi-Static Test

7.2.3.2. Dynamic Model Validation
N/A (HIRS/3 first natural frequency is above 100 Hz).

7.2.3.3. Vibration Tests

HIRS/3 is the result of an evolution of instruments. HIRS/2 was qualified to levels much higher that the

values used for HIRS/3 Two alternatives are possible :

-HIRS/3 could clam that the qudlification levels of HIRS/2 wver HIRS/3. In this case HIRS/3 for

: 61

METOP will need only' acceptance testing according to the METOP GICD rules.

- HIRS/3 is different to HIRS/2 and cannot claim previous qudification. In this case HIRS/3 will need

qualification testing as defined in GICD.

If the path of only acceptance by METOP is chosen, it will be necessary to provide documentation that
proves that the differences between HIRS/2 and /3 are small enough to justifv this approach. It will be

necessary to provide documentation detailing the mechanical qualification of the HIRS/2.

Next section will indicate the resulting test programmes for HIRS/3 that will result in both cases.

Sinus or Burst
Note :HIRS/3 first natural frequency is 188 Hz.

status on NOAA levels

| HIRS/2was sinus tested to 11.5 g thrust axis and 7.5 in both lateral axes.
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For HIRS/3, and according to NOAA documentation, no sinus test is necessary, but a qualification
burst test shall be conducted by applying 19.44 g for the HIRS/3 in the three axes. An acceptance burst
shall be conducted by applying 15.64 g in the three axis.

METOP Required Levels

The sinus qualification levels of HIRS/2 are below the qualification levelsrequested in GICD (15gin
the three axes). Nevertheless, the levels requested by NOAA for HIRS/3 during burst test, are above the
15 g sinus qualification levels.

Note the discrepancy in the duration : 0.5s for NOAA versus the 1 s. requested by METOP GICD. The
NOAA test frequency shall be clarified.

Random Vibrations
Satus on NOAA Levels

HIRS/2 was qualified with a constant level of 0.085 g rms from 20 to 2000 Hz producing a total of
129 g rms.

As per NOAA documentation, for HIRS/3 the qualification level is 0.023 g%/Hz from 20 to 2000. Tota
level is6.7 g rms and 1 min of duration.

The acceptance levels are identical to qualification levels.

METOP Required Levels
The application of the METOP GICD levels produces for a MRS of 33 kg the following levels :
Quadlification Leves

I Frequencf(ﬁz} 20to100 l 100 to 400 | 400 to 2000 |

| Power Densty |  +3dB/Oct 0078gMz |  -3dB/Oct. |

The Qudlification Levels required by METOP for HIRS/3 are below the Qualification Levels of
HIRS/2. If HIRS/3 could claim that it has been qualified — through HIRS/2 — to levels more stringent
than METOP ones, it will need only acceptance testing. The METOP required levels are
then:

Acceptance Levels

Frequency (Hz2) 20 to 100 100 to 400 400 to 2000

Power Density +3 dB/Oct 0.049 g*/Hz -3dB/Oct.

These levels are above HIRS/3 NOAA specified ones stated above. Then, for METOP valid acceptance
testing — if previous qualification is claimed — the Random levels for HIRS/3 shall be increased from
0.023 to 0.049 g'/Hz.

If the qualification of HIRS/2 cannot be applied, the levels to be used should be METOP qualification,
i.e. 0.078 g/Hz

Levels can be seen in the graphic below :
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7.2.4. Thermal Test Description
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8. GROUND SUPPORT EQUIPMENT DESCRIPTION

8.1. MECHANICAL GROUND SUPPORT EQUIPMENT

8.2. ELECTRICAL GROUND SUPPORT EQUIPMENT

For testing at spacecraft level, HIRS/3 will provide one Portable Test Unit (PTU) and two thermal
vacuum targets (simulating space and Earth viewing) and their respective controllers. This equipment
will operate at both 110 and 220 VAC, 50-60 Hz.

The possibility to have semi-automated test sequences with the PTU (or equivalent) is under evaluation.
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9. GROUND OPERATION DESCRIPTION

9.1. MODEL PHILOSOPHY

9.1.1.  Instrument Structural Model (SM)
' None for METOP

9.12 Instrument Engineering Model (EM)
’ None for METOP

9.13. Instrument Proto-Flight Model (PFM)
None for METOP

9.1.4. Instrument Flight Model (FM)
2 Flight Models are to be delivered for METOP

9.15. Flight Spare Mode
9.2. DELIVERY TO THE AN SITE

9.3. INSTRUMENT INTEGRATION

On TIROS platform an end-to-end testing at system level is performed in the thermal vacuum chamber.
For HIRS/3, stimuli are required for cryogenic cooling and to simulate deep space and Barth scene
conditions. The applicability to the METOP satellite is TBD. Note that only the infrared channels
require these stimuli, as the visible channels are optically simulated at ambient conditions.

9.4. PURGING REQUIREMENTS

9.5. GROUND ENVIRONMENTAL CONDITIONS

9.6. LAUNCH OPERATIONS

{HIRS/C« both mechanisms (scan mirror and filter wheel) shall be powered on during the launch phase. to
off-load the bearings.

% Telemetry shal be acquired prior to launch for health status and during launch.
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10. FLIGHT OPERATION DESCRIPTION

10.1. OVERVIEW
HIRS/3 is continuously on along the orbit (duty cycle : 100%).

Commissioning and calibration : TBD

10.2. ORBITAL PARAMETERS

10.2.1. Operational Orbit

10.2.2. Pointing Characteristics

10.3. MISSION OPERATION PHASES

10.4. OPERATION CONSTRAINTS AND RESPONSIBILITIES

10.4.1. Commandability

10.4.2. Observability

10.4.3. Information Provided by the Platform

Once switched on, HIRS/3 nomindly proceeds without any requirement for software or parameters
update.

10.5. INSTRUMENT OPERATION MANUAL
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11. PRODUCT ASSURANCE AND RELIABILITY
Reliability

Design Lifetime : 3 years

Reliability : 0.828

IR detector lifetime: 5 vears.

Flight Experience : about 4.5 years

12. PROGRAMME AND SCHEDULE
HIRS/3 is scheduled for a first flight on NOAA-K in 1995

Date :
Page -

MMS/MET/TN/160.94

. 12 Rev.: 0O

Septembre 1991
67
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1. GENERAL

11 PURPOSE OF THE DOCUMENT

This document is the AMSU-AI Instrument Interface Control Document Outline. It deals with interface
definition from the instrument to the METOP platform and with AMSU-A1 responses to the generic
METOP Genera Instrument Interface Control Document (GICD).

12 INSTRUMENT PRESENTATION

The Advanced Microwave Sounding Unit AMSU-A is a 13 channel instrument, consisting of two
separate modules, AMSU-Al and AMSU-A2.

AMSU-Al is a 13 channel (numbers 3-15) scanning microwave instrument that is used to obtain data to
calculate temperature and humidity profiles of the atmosphere from the Earth's surface up to the
stratosphere.

AMSU-AI has two scanning reflectors with momentum compensation and provides sounding in
13 channels. The footprint a nadir is 50 km. The scanner has 30 Earth pointing positions with a
separation of 3.333 deg. between them, one cold calibration position, and one warm calibration position.
A full scan takes 8 seconds.

Centre Frequency (MHz) Bandwidth (MHz) K NEAT
3 50300 180 04
4 52800 400 0.25
5 53396 + 115 170 /2 p.b. 0.25
6 54400 400 0.25
7 54940 330 0.25
g 35500 330 0.25
9 57290344 =F, 78 04
10 F,_+217MHz 36 04
11 F,, +322.2 MHz 16 0.6’
+ 48 MHz
12 F,, 3222 MHz 8 08
+22 MHz
13 F,, £322.2 MHz 8 0.8
+ 10 MHz
14 F, %3222 MHz 3 1.2
+45MHz |
15 89.0 GHz 6000 05
Scan Type: Step Starer
Scan Rate(s) : 8.0
IFOV (deg.) : 3.3 (circular)
Sampling Interval (deg ): 3.3333
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Earth View Pixelsper Scan: 30
Swath (deg. with respect to the nadir direction) : + 48.333 deg.

13. APPLICABLE AND REFERENCE DOCUMENTATION

Applicable Documentation

General Instrument Interface Control Document - GICD
Ref. MMS/MET/SPE/JLD/159.94, Iss. 2, dated Sept. 94

Reference Documentation

Unique Instrument Interface Specification for the AMSU-AI
Ref. 1S-2617547 (MET0026), dated March 1992, rev. N
To be replaced by Rev. P, Feb. 93 for future phase

Performance Assurance Requirements for the Advanced Microwave Sounding Unit - A
Ref. S-48040 (MET0109), dated March 1992, rev. O

AMSU-A | Thermal Interface Control and Instrument Configuration
Ref. 1333964 (METO0009 & 0010), dated 89
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2. MECHANICAL INTERFACE DESCRIPTION

2.1. INSTRUMENT PHYSICAL CHARACTERISTICS

2.1.1.  Module / Unit Identification

AMSU-AI consists of asingle unit.

The Part Number and Identification Code of the AMSU-AI instrument are :
PARTNO: TBD
ID CODE: TBD

The location of the labds giving these Part Numbers and Identification Codes are defined in the
Mechanical Interface Control Drawing.

Thetotal envelopeis: L (Veocity) x W x H (Earth) 703 x 300 x 591 mm

Note that the overall dimensions shall be enlarged by 0.5 in. (1.3 cm) to include the MLI thermal
blanket.

AMSU-A 1 does not have any deployable part

2.1.2.  Mechanical Interface Control Drawing

The AMSU-AI instrument configuration and mechanical interfaces are given in the Mechanical
Interface Control Drawing, TBD.

The AMSU-AI configuration is illustrated in Figure 2.1/1

213 Mass Properties

Mass

The mass properties of the AMSU-AI instrument are given in the following table. The coordinate
svstem used is the Instrument Mounting Interface Reference Frame, F amsu-a1 , with the origin being at
the reference mounting hole location as defined in the Mechanical Interface Control Drawing, TBD (Cf.
drawing) The directions of the F amsu-a1 axes are the same as the Spacecraft Reference Frame Fs.

Module Basic Mass Centre of Mass L ocation (£ 5 mm)
/Unit (= 0.1 kg, TBC) Xansu-a1 Y anmst-a1 ZanMsu-a1
(Sun) (Anti-velocity) (Zenith)
AMSU-A 1 53.3 kg -158.8 mm + 278.4 mm - 233.7 mm
(1175 Ib)

The above mass includes the TIROS bracket mass (TBC).

AMSU-A | Mass Properties
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Figure 2.1/1: AMSU-A1 Configuration
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The AMSU-A1 moments of inertia are as follows. The coordinate system used is the Instrument
Mounting I nterface Reference Frame, F amsi-a1 (TBC), with the origin being at the reference mounting
hole location as defined in the Mechanical Interface Control Drawing, TBD (Cf. drawing). The
directions of the Famsu-a1 axes are the same as the Spacecraft Reference Frame Fs. The accuracy of
these vaues is within TBD % of the tota instrument moment of inertia for each axis.

AMSU-Al Moments of Inertia

2.1.4. Instrument Induced Distur bances

2.1.4.1. Non Recurring Transient Events

TBD

2.1.4.2. Continuous and Recurring Transient Events

AMSU-AL step scanning

Module Moments of Inertia (kg.m?)
/Unit Ixx In I2z Ixy Ixz Iyz
AMSU-A | 3.1898 1.7558 2.4582 TBD TBD TBD
10900 6000 8400 Ib.sqin

is uncompensated. The disturbance torque which is illustrated in

Figure 2.1.4/1 corresponds to time measurements. The disturbance consists of a torque profile on the Y
axis (velocity, scenes are scanned from Sun, through Earth. to space) divided into 30 Earth dwells, a
cold calibration and a hot calibration over a period of 8 sec. It is assumed that there is zero disturbance

torgue on the other axes.

The static and dymamic unbalance values on each axis are TBD.

Transient : TBD

2.1.4.3. Induced Disturbance Torque Effect

2.1.4.4. Flexible Modes
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2.15. Field of View Definition
AMSU-Alboresight is defined as the nadir direction. The instrument field of view definition is:
- two vertex (Cf. drawing)
-~ Spacecraft provision :
. cross-track scan plane : from 87/90 deg. anti-Sun-wards to 52/56 deg. Sunwards.

This is the general envelope for 3.5/7° margin + 48.333” Sunwards + 48.333" anti-
Sunwards + 35” anti-Sun calibration + 3.5/7° margin

Orbit plane : = 7 deg. (TBC)
AMSU-AI field of view is illustrated in Figure 2.1.5/1.

2.2. INSTRUMENT MOUNTING ATTACHMENTS

221 Method
AMSU-AI is hard mounted with two alignment pins and multiple bolts through an Aluminium
baseplate.

The AMSU-A1 instrument is mounted to the platform panel using a Specific interface Hardware.
Thermal isolation may be utilised at either the instrument interface or a the interface of the Specific
Interface Hardware to the platform.

The bolt size, length and torque required to mount the instrument are :

Module / Unit l Bolt Size Length (mm) l Torque (Nm) Quantity

AMSU-A 1 |

2.2.2. Reference Point (Hole)

The definition of the Reference Point / Hole for AMSU-AI is given in the Mechanica Interface Control
Drawing, TBD (Cf. drawing)

2.2.3. Mounting Surfaces

AMSU-AI is mounted on its +X (METOP axis) side. which is compliant with a dedicated stand
accommodation supplied by the Platform (Specific Interface Hardware). The flatness of the mounting
surfaces does not exceed TBD mm in 100 mm The surface roughness of the mounting surfaces are
TBD pm. Each mounting foot has an area of TBD mm?

2.2.4. Materials

The material of the AMSU-AI baseplate is aluminium allov. A TBD finish is applied to the materia at
the mounting area. The Specific Interface Hardware is dummium skinned honeycomb (TBC).
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Figure 2.1.5/1: AMSU-AI Field of view
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- Co-alignment Requirements : + 0.30 deg. (35) with respect to AMSU- A2
+ 0.30 deg. (30) with respect to MHS

2.5, STRUCTURAL DESIGN

2.5.1 Limit Loads

The structural design analyses are TBD.

2.52. Quasi-Static Design Loads

253.  Safety Factors
The calculated safety factors are TBD

254. Dynamic Characteristics and Structural Mathematical Model

The structural dynamic analyses are reported in TBD. The first natural frequency of the AMSU-AI
instrument is 125 Hz. this value having been established by test. Note that this value includes the
TIROS side bracket (TBC).

As this frequency is above the 100 Hz limit, no mechanical interface model is required
2.6. MECHANISMS

26.1 Functional Description

Mechanical step-scanning (2 antennae) mechanism : TBD

2.6.2. Performances

There is no launch constraint. Permanent magnetic motor detents prevent reflector motions during test
shipment and launch.

2.7. PYROS
None
2.8. INSTRUMENT APERTURE COVERS

2.8.1. Sensor Covers

2 antenna covers and 2 feed horn covers

282 Removable Covers (Non-Flight Items)
Cf §28.1.

2.83. Deployable Covers (Flight Items)
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3. THERMAL INTERFACE DESCRIPTION

3.1 INSTRUMENT THERMAL CONTROL CONCEPT

3.1.1 Category

AMSU-AIl is a Category A instrument. Its thermal control is autonomous with dedicated radiators on
the instrument sides.

3.1.2.  Thermal Control Philosophy

Normal Operation

During nominal operating modes, AMSU-AI uses passive radiators to reject its heat to space.
Contingency Modes

During the contingency modes the instrument is switched off, and internal heaters are only required to
supply make-up heat. The temperature of AMSU-AI will be maintained within its survival limits by
these heaters which are controlled using thermostats with a lower set point of -20 deg. C.

3.2 INSTRUMENT TEMPERATURE REQUIREMENTS AND THERMAL CONTROL
BUDGETS
3.2.1. Temperature at Conductive Interface

Temperature Ranges

The operating, non-operating and switch-on temperatures for the AMSU-AI instrument are defined
below. The Temperature Reference Point at which these temperatures apply is defined in TBD.

Deg. C Operation Non-Operation Switch-On
AM SU-AI Min. Max. Min. Max. Min.
Acceptance +8 +28 -30 +66 -20
Qualification (TBC) -20 +40 -35 +71 -25

Stability Requirements
There is no stability requirement for AMSU-A 1.

3.2.2. Radiative | nterfaces
The AMSU-AI passive radiator areas and the thermal views to space are given below.
The radiator areas shall be confirmed since other values can be found in the documentation, such as

-Z METOP axus 160 sq. in., i.e. 1032,256 ¢cm?
-Y METOP axus 373 &q. in,, i.e. 2406,45 cm?
-X METOP axis 336 sq. in., i.e. 2 167,74 cm?
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Radiator Area Required Calculated Calculated
Face Part (m?) View Factor View Factor Gebhart
-8 0.0756 TBC 1.0 0.9693 0977 1
-Ys -zs 0.0957 TBC 0.91 0.844 0.8719
-Ys + 7S 0.08 13 TBC 0.78 0.5547 0.6488
-XS -zs 0.0804 TBC 0.66 0.8113 0.8405
-XS +Zs 0.1371 TBC 011 0.6377 0.6792
AMSU-AI Radiator Areas and Thermal Fields of Vi
3.23. Heater Power Budgets
The heater power budgets for the AMSU-AI instrument are :
Module Heater Power Budget (Watts)
/Unit Operating Operating Off Off
Hot Case Cold Case Cold Case Safe Mode
AMSU-AI 40.0 40.0

The resistance of the heaters is TBD.

3.24. Instrument Thermal Dissipation

The dissipation of the AMSU-AI instrument is constant throughout the orbit and is:

Module Thermal Dissipation (Watts)
/Unit Operating Operating Orbital Contingency /
Stand-by Average Safe Mode
AMSU-AI N/A 97.2 (TBC) 97.2 (TBC) 0.0

3.2.5. Heat Exchange Budgets

The calculated heat transfer between the platform and the AMSU-AI instrument for different cases are

Module Conductive Heat Transfer (Orbit Average, Watts)
/Unit Operating Operating Off Off
Hot Case Cold Case Hot Case Cold Case
AMSU-AI <5 (TBC) <5 (TBC) <5 (TBC) <3 (TBC)
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3.2.6. Thermo-Elastic Interface

The AMSU-Al instrument has an aluminium baseplate with a coefficient of thermal expansion of 25 x
10/ deg. C (TBC). The interfacing structure for the AMSU-AL instrument is aluminium (TBC) with a
coefficient of thermal expansion of 25 x 10" / deg. C (TBC).

3.3. THERMAL INTERFACES

3.3.1. Thermal Interface Drawing

The thermal interfaces are defined in Thermal Interface Drawing, TBD.

3.3.2. Conductive Interfaces

The conductive interface is the instrument baseplate which isdefined in the Mechanica Interface
Control Drawing (TBD), andin § 2.2.3.

The total thermal conductance between the AMSU-AI instrument and the Specific Interface Hardware
is TBD WIK.

The calculated temperatures at the AMSU-A1 conductive interfaces are TBD

3.3.3. Radiative Interfaces

The external surfaces of the AMSU-AI ingrument, and the finishes used are given in the Thermal
Interface Drawing (TBD). The AMSU-A 1 thermal coatings are illustrated in Figure 3.3/1.

The thermo-optical properties of the finishes are given in the following table :

Surface/ Material Solar Absorptance Infra-Red

BOL EOL Emittance
Silver Teflon Tape 0.07 0.17 0.65
Black Anodize 0.52 0.54 0.84
SSM 0.07 0.12 0.79
Gold Plate/Gold Tape 0.28 0.32 0.04
Chemical Conversion Coating 0.47 0.55 0.14
MLI (SSM external) 0.07 0.17 0.65

AMSU-A1 Material Thermo-Optical Properties (TBC)

The radiative environmental temperatures for AMSU-A 1 are TBD.

3.3.4. Thermal Heat Capacity
The thermal heat capacity of AMSU-Alis TBD J/K.
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3.3.5. Instrument Temperature Measurement

3.3.6. Thermal Mathematical Models

AMSU-A1 thermal model exists in SINDA/TRASYS. It has been converted to ESATAN/ESABASE
and will soon undergo testing.

3.4. THERMAL ENVIRONMENT CONDITIONS

SSM or Sitvered Teflon

Chemical Conversion Coating
a= 0.55

e=0.14

Figure 3.3/1: AMSU-AI Thermal Coatings
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4. ELECTFUCAL INTERFACE DESCRIPTION
4.1. POWER SUPPLY INTERFACES
Power Sour ces
AMSU-AI requires to be power supplied with the following buses :
Power Bus Number of Goals TIROS Name
Interfaces
+ 28V regulated power bus 3 One for the instrument primary Main regulated bus
power
One for the motors and heaters Pulse load bus
One for the temperature sensors Switched telemetry bus
when the instrument is off
+10 V regulated power bus 1 One for commands and digital B Intcrface Bus
command verification telemetry

Voltagerange: TBD
Power connection redundancy : TBD

Power Consumption and M odes

Basic Power Consumption LEOP Instr. |PLM Fix| PLM
ON Safe
+ 28 V regulated power bus:

Primary power Off 820 W Off Off

Motors and heaters Off 60 W Off Off
Temperature N Off TBC | 02 w | OffTBC| Off TBC
+10 V regulated power bus OoffTBQ 0.1W OffTBC OQffTBC

\
TOTAL ow 88.3 w ow ow
TBC | TBC TBC

4.2. COMMAND AND CONTROL INTERFACES

AMSU-Alsvnchronously operates with reference to a 1.248 MHz clock (master clock). One 8 sec
synchronization signal shall be provided by the platform.

AMSU-A 1 requires 4 pulse discrete and 10 leve discrete commands from the platform.

} 1sunvival heater On / Off command.
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43 SCIENCE DATA INTERFACES

16.320 kHz clock
Data enable signal
Digital A data interface

In full scan mode, AMSU-AI generates 1244 bytes of measurement data per scan (i.e. during § sec.).
On TIROS, 26 words in the AIP minor frame (so for 100 ms) are alocated to AMSU-AI, and are filled
with 13 pairs of 8-bit words. Hence an apparent raw data rate of 2.080 kbps.

The encapsulation of the 1244 octets within one source packet results in a source packet total length of
1258 octets.

The packetized data rate is then 1.258 kbps.

4.4. HOUSEKEEPING TELEMETRY
Analog housekeeping telemetry : 21
Digital housekeeping telemetry (digital B) : 12
Switched telemetry bus thermistor interface: 6

45~ CONNECTORS AND HARNESS

45.1.  Connectors Used at Spacecraft Interfaces

45.2. Connectors Used for Inter-Instrument Unit Interface

453. EMC Aspects

454, Cable Harness
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5. EMC / RFC INTERFACE DESCRIPTION
RF Receiver Characteristics
The AMSU-A 1RF receiver has the following specified characteristics .
CE BW Sensitivity
50.3 GHz 180 MHz -96.7 dBm

AMSU-Al can stand the full POEM-I (165 V/m) field strength.

6. CLEANLINESS AND SPACE ENVIRONMENT DESIGN CONSTRAINTS

6.1. CLEANLINESS REQUIREMENTS AND CONTAMINATION CONTROL

AMSU includes a lubricant reservoir for the bearings that is not sealed and may evaporate (to be
clarified). A class 100 000 room is sufficient.

6.2. RADIATION ENVIRONMENT

6.2.1. Radiation Deposit Dose

6.2.2. Single Event Upset (SEU) and Latch-Up

6.3. SPACE ENVIRONMENT CONSTRAINTS

6.3.1. hleteoroid and Space Debris

6.3.2. Atomic Oxygen
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7. INSTRUMENT DESIGN VERIFICATION DESCRIPTION

71. TESTING

72.  TEST REQUIREMENTS

7.21.  Electrical Functional Test Description

7.22. EMC Test Description

7.23. Mechanical and Structural Test Description

7.24. Thermal Test Description

8. GROUND SUPPORT EQUIPMENT DESCRIPTION

8.1 MECHANICAL GROUND SUPPORT EQUIPMENT

8.2. ELECTRICAL GROUND SUPPORT EQUIPMENT
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9. GROUND OPERATION DESCRIPTION

9.1. MODEL PHILOSOPHY

9.1.1. Ingtrument Structura Model (SM)
None for METOP.

9.1.2.  Instrument Engineering Model (EM)
None for METOP.

9.1.3.  Instrument Proto-Flight Model (PFM)
None for METOP.

9.1.4.  Instrument Flight Model (FM)
2 Flight Models are to be delivered for METOP.

9.15. Flight Spare Mode

9.2. DELIVERY TO THE AIV SITE

9.3. INSTRUMENT INTEGRATION

9.4. PURGING REQUIREMENTS

Date :

MMS/MET/TN/160.94

':2 Rev.: O

September 1994

. 89

The bearing lubricant reservoir needs to be purged on ground with N2 (to be clarified)

95, GROUND ENVIRONMENTAL CONDITIONS

9.6. LAUNCH OPERATIONS
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10. FLIGHT OPERATION DESCRIPTION

10.1. OVERVIEW
AMSU-AI is continuously on aong the orbit (duty cycle : 100%).

Commissioning and cdibration : TBD

10.2. ORBITAL PARAMETERS

10.2.1. Operational Orbit

10.2.2. Pointing Characteristics

10.3. MISSION OPERATION PHASES

10.4. OPERATION CONSTRAINTS AND RESPONSIBILITIES

10.4.1. Commandability

10.4.2. Observability

10.4.3. Information Provided by the Platform

Once switched on. AMSU-AT nominaly proceeds without any requirement for software or parameters
update

10.5. INSTRUMENT OPERATION MANUAL
Fix and Safe Modes

One command witches the Instrument off and internaly parks the reflectors
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11 PRODUCT ASSURANCE AND RELIABILITY

Reliability
Design Lifetime: 3 years
Reliability : 0.7 for 3 years

In-Hight Experience : None

12. PROGRAMME AND SCHEDULE
AMSU-AI 1sscheduled for afirst flight on NOAA-K in 1995
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1. GENERAL

11. PURPOSE OF THE DOCUMENT

This document is the AMSU-A2 Instrument Interface Control Document Outline. It deals with interface
definition from the instrument to the METOP platform and with AMSU-A2 responses to the generic
METOP Genera Instrument Interface Control Document (GICD).

12. INSTRUMENT PRESENTATION

AMSU-A2 is the second module of the Advanced Microwave Sounding Unit. It is a two channel
scanning microwave instrument (channel numbers 1 and 2), that is used to obtain data to calculate
temperature and humidity profiles of the atmosphere from the Earth’'s surface up to the stratosphere.

AMSU-A2 has one rotational scanning reflector without momentum compensation and provides
sounding in two channels. The footprint at nadir is SO km. The scanner has 30 Earth pointing positions
with aseparation of 3.333 deg. between them, one cold calibration position, and one warm calibration
position. A full scan takes 8 seconds.

Centre Frequency (MHz) Bandwidth (MHz) K NEAT
1 23800 270 0.3
2 3 1400 180 0.3
Scan Type ! Step Starer
scan Rate (s) 8.0
IFOV (deg.) : 3.3 (circular)
Sampling Interval (deg.) : 3.3333
Earth View Pixelsper Scan: 30
Swath (deg. with respect to the nadir direction) : + 48.333 deg

13 APPLICABLE AND REFERENCE DOCUMENTATION
Applicable Documentation

General Instrument Interface Control Document - GICD
Ref. MMSFMETISPEIJLDII59.94. Iss. 2, dated Sept. 94

Reference Documentation

Unique Interface Specification for the AMSU-A2
Ref. 152624483 (MET0026). dated March 1992, rev. L
To be replaced by Rev. M. Feb. 93 for future phase

Performance Assurance Requirements for the Advanced Microwave Sounding Unit - A
Ref $-180-40(METO 109). dated March 1992. rev. 0

AMSU-A2 Thermal Interface Control and Instrument Configuration
Ref. 1333965 (METO001 1& 0012). dated 89
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2. MECHANICAL INTERFACE DESCRIPTION

2.1 INSTRUMENT PHYSICAL CHARACTERISTICS

2.11. Module/ Unit Identification

AMSU-AZ2 consists of asingle unit.

The Part Number and Identification Code of the AMSU-A2 instrument are :
PARTNO: TBD
ID CODE: TBD

The location of the labels giving these Part Numbers and Identification Codes are defined in the
Mech-nical Interface Control Drawing:

Thetotal envelopeis: L (Veocity) x W x H (Earth) 614 x 736 x 684 mm.

Note that the overal dimensions shall be enlarged by 0.5 in. (1.3 cm) to include the MLI thermal
blanket.

AMSU-A2 does not have any deployable part.

2.1.2.  Mechanica Interface Control Drawing

The AMSU-A2 instrument configuration and mechanica interfaces are given in the Mechanica
Interface Control Drawing, TBD.

The AMSU-A2 configuration isillustrated in Figure 2.1/1.

2.1.3. Mass Properties
M ass

The mass properties of the AMSU-A2 instrument are given in the following table. The co-ordinate
system used is the Instrument Mounting Interface Reference Frame, F ansu-az2 , with the origin being at
the reference mounting hole location as defined in the Mechanical Interface Control Drawing, TBD (Cf
drawing). The directions Of the F ansi:.a2 axes are the same as the Spacecraft Reference Frame Fs.

Module Basic Mass Centre of Mass Location (5 mm)
/Unit (01 kg, TBC) XAMSU-AZ Y anMsu-A2 Zamst-a2
(Sun) (Anti-velocity) (Zenith)
AMSU-A2 474 kg +392.9 mm - 309.1 mm - 312.4 mm
(104.5 1b) (TBC) (TBC) (TBC)

AMSU-A2 Mass Properties
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Moments of Inertia

The AMSU-A2 moments of inertia are as follows. The co-ordinate system used is the Instrument
Mounting Interface Reference Frame, Famsu-a2(TBC), with the origin being at the reference mounting
hole location as defined in the Mechanical Interface Control Drawing, TBD (Cf. drawing). The
directions of the Famsu-a2 axes are the same as the Spacecraft Reference Frame Fs. The accuracy of
these values is within TBD % of the total instrument moment of inertia for each axis.

Module Moments of Inertia (kg.m?)
/Unit Ixx Iyy Iz2 Ixy Ixz Iyz
AMSU-A?2 2.780 3.307 3.365 TBD TBD TBD
9500 11300 11500 Ib.sqin

AMSU-A2 Moments of Inertia (TBC)

2.1.4. Instrument Induced Disturbances

214.1. Non Recurring Transient Events

TBD

2.1.4.2. Continuous and Recurring Transient Events

AMSU-A2 is 90 to 100 % momentum compensated. The residual torque over 8 sec. along the Y
+(velocity) axis (scan from Sun. through Earth. to space) is illustrated in Figure 2.1.4 (from ASCII file
time measurement). It is assumed that there is zero residual torque on the other axes.

The static and dvnamic unbalance values on each axis are TBD.

Transient : TBD

214.3. Induced Disturbance Torque Effect

2.1.4.4. Flexible M odes

2.15. Field of View Definition
AMSU-A2 boresight is defined as the nadir direction. The instrument field of view definition is :
- vertex
- Spacecraft provision
. cross-track scan plane : from 87/90 deg. anti-Sun-wards to 52/56 deg. Sunwards.

This is the general envelope for 3.5/7° margin + 48.333” Sunwards + 48.333” anti-Sun-
wards +33° anti-Sun calibration +3.5/7° margin

Orbit plane : £3.53/7 deg. (TBC)

AMSU-AZ2 field of view is illustrated in Figure 2.1.5/1



Residual Torque (Acrojet)

Ref : MMSMET/TN/160.94
Issue : 2 Rev.: O
MATRA MARCONI SPACE AMSU-A2 Date : September 1994
Page : 99
. : - - . o0
l
s -
i
i
[
|
5_ -|NO
’ -l vy
. <
1
iL 58]
i
| ~
|
i
| —
| | 1 —~ o‘ é Oc
- o = = 0
2 3 - - A o b

(m-q7) sprurdury

Figure 2.1.4 : AMSU-A2 Residual Torque

Time (scconds)



MMS/MET/TN/160 94
Rev.: 0

Ref -
|ssue:2

AMSU-A2

MATRA MARCONI SPACE

Date S%)tember 1994
Page: 10

QU

SNERANITLE
(DL

s WY

INILLEIERELL L_¥

ol

Al

|
_ .
| h I R TR
I e
!
|

W)

| O

AL PO

St

08

425

T .
i S
Hore | : b
._ | I T
bl N
|l ) T T A
. , [T <1 1 B ALK RN
ENIOS 3N TRIDF R o SRS
- i)
© 0 W130335

TIXTTIIV

g N

-

G LN RITART

N
il
l
i

. .

P

AN -

RTINS

WS 1RV
¥ HAS LAY 7

Figure 2.1.5/1: AMSU-A2 Fidd of View



Ref : MMS/MET/TN/160.94

Issue  :2 Rev. : 0
MATRA MARCONI SPACE AMSU-A2 Date : September 1991
Page : 101

2.2. INSTRUMENT MOUNTING ATTACHMENTS

2.2.1. Method

The AMSU-A2 instrument is mounted to the platform panel using Specific interface Hardware which
are flexible mounts. Thermal isolation may be utilised at either the instrument interface or at the
interface of the Specific interface Hardware to the platform.

The bolt size, length and torque required to mount the instrument to this hardware are :

Module / Unit l Bolt Size Length (mm) l Torque (Nm) ‘ Quantity |

AMSU-A2 J

2.2.2. Reference Point (Hole)

The definition of the Reference Point / Hole for AMSU-A2 is given in the Mechanical Interface Control
Drawing, TBD (Cf. drawing).

2.2.3. Mounting Surfaces

AMSU-A2 is mounted using its baseplate which is on the nadir side (+Z, METOP) of the platform..
The flatness of the mounting surfaces does not exceed TBD mm in 100 mm. The surface roughness of
the mounting surfaces are TBD pm. Each mounting foot has an area of TBD mm?.

The accommodation shall be compliant with the use, on ground, of a reflector cover (Cf. § 2.8.1).

2.2.4. Materials

The matenal of the AMSU-AZ baseplate is aluminium allov. A TBD finish is applied to the material at
the mounting area. The Specific Interface Hardware is Titanium or INVAR (TBC).

2.2.5. Interface Loads

The mounting bolds can withstand up to 5.6 Nm (50 in.lb) maximum The caculated interface loads
induced by the AMSU-A2 instrument are

Module / Unit Shear Tension Compression Moment

(N) (N) (N) (Nm)

AMSU-A2 Baseplate

2.2.6. Accessibility

Accessibilitv in the+Y's direction isrequired as The connectors are on the +Y's side of the Instrument.

2.2.7.  Grounding Point

The locations of the grounding pomts on the AMSU-AZ instrument are defined in TBD.
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2.3. POINTING

The pointing requirements for the AMSU-A2 instrument are expressed at the Instrument Mounting
Interface Reference Frame Fausu-a2

Absolute Pointing Error (Accuracy) : + 0.15 deg. (30)
Absolute Measurement Error (Knowledge) : + 0.10 deg. (30)
Absolute Rate Error (Rate) : + 0.005 deg./sec. (30)

24. ALIGNMENT

24.1. Optica Reference Cube

The position of the Opticad Reference Cube is given in the Mechanical Interface Control Drawing,
TBD. The cube has two alignment surfaces of size TBD mm? which are viewed from the spacecraft
TBD axes.

The cube shall be covered with a cover in accordance with TBD prior to launch.

24.2. Alignment Procedure

24.3. Co-Alignment

The co-dignment requirements are expressed between the Instrument Mounting Interface Reference
Frames (Fpi) of each instrument.

AMSU-A2 shall be co-aligned with AVHRR/3 to within + 0.05 deg. (30).
Note that the following information can be found in the UIIS (Cf. § 1.3) :

- Co-alignment Requirements : + 0.30 deg. (30) with respect to AMSU-AI
+ 0.36 deg. (30) with respect to MHS

2.5, STRUCTURAL DESIGN

2.51 Limit Loads

The structural design analyses are TBD.

2.5.2. Quasi-Static Design Loads

2.53. Safety Factors

The caculated safety factors are TBD
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2.54. Dynamic Characteristics and Structural Mathematical M odel

The structural dymamic analyses are reported in TBD. The first natural frequency of the AMSU-A2
instrument is 82 Hz, this value having been established by test. The second and third frequencies are
120 and 138 Hz (data are only available up to 150 Hz).

As this frequency is below the 100 Hz limit. a mechanical interface model is required.
Structural Mathematical Model

A 100-node model exists and is correlated with the 82 Hz resonance.

2.6. MECHANISMS

26.1 Functional Description

Mechanical step-scanming (1 antenna) mechanism : TBD.

2.6.2. Performances

There isno launch constraint. Permanent magnetic motor detents prevent reflector motions during test.
shipment and launch.

2.7. PYROS

None.

2.8. INSTRUMENT APERTURE COVERS

2.8.1. Sensor Covers

1 antenna cover and feed horn cover.

2.8.2. Removable Covers (Non-Flight I1tems)
Cf. §2.8.1.

2.8.3. Deployable Covers (Flight Items)

None.
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3. THERMAL INTERFACE DESCRIPTION

3.1 INSTRUMENT THERMAL CONTROL CONCEPT

3.1.1 Category

AMSU-A2 isa Category A instrument. Its thermal control is autonomous with dedicated radiators on
the instrument sides.

3.1.2. Thermal Control Philosophy

Normal Operation

During nominal operating modes, AMSU-A2 uses passive radiators to reject its heat to space.
Contingency Modes

During the contingency modes the instrument is switched off, and internal heaters are required to supply
make-up heat. The temperature of AMSU-A2 will be maintained within its survival limits by these
heaters which are controlled using thermostats with a lower set point of -20 deg. C.

3.2 INSTRUMENT TEMPERATURE REQUIREMENTS AND THERMAL CONTROL
BUDGETS
3.2.1 Temperature at Conductive Interface

Temperature Ranges

The operating, nonoperating and switch-on temperatures for the AMSU-A2 instrument are defined
below. The Temperature Reference Point a which these temperatures apply is defined in TBD.

Deg. C Operation Non-Oper ation Switch-On
AMSU-A2 Min. Max. Min. Max. Min.
Acceptance +6 +28 -30 +66 -20

Qualification (TBC) -20 +40 -35 +71 -25

Stability Requirements
There is no stability requirement for AMSU-A2.

3.2.2. Radiative Interfaces
The AMSU-A2 passive radiator areas and the therma views to space are given below.
The radiator areas shah be confirmed since other values can be found in the documentation. such as :

-Y METOP axis 79 g in.. i.e. 509.7 cm’
+Y METOP axis 183 sq.in..i.e. 1 180.7 cm?
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Radiator Area Required Calculated Calculated
Face (m?) View Factor View Factor Gebhart
-Ys 0.1013 TBC 0.98 0.8509 0.8801
+Ys 0.1188 TBC 0.51 0.4837 0.5754
AMSU-A2 Radiator Areas and Thermal Fields of View
3.23. Heater Power Budgets
The heater power budgets for the AMSU-A2 instrument are :
Module Heater Power Budget (Watts)
/Unit Operating Operating Off Off
Hot Case Cold Case Cold Case Safe Mode
AMSU-A2 15.0 150
The resistance of the heaters is TBD.
3.2.4. Instrument Thermal Dissipation
The dissipation of the AMSU-A2 instrument is constant throughout the orbit and is:
Module T Thermal Dissipation (Watts)
/Unit Operating Operating Orbital Contingency |
Stand-by Average Safe Mode
AMSU-A2 N/A 41.0(TBC) 41.0 (TBC) 0.0

3.25. Heat Exchange Budgets
The calculated heat transfer between the platform and the AMSU-A2 instrument for different cases are :
Module Conductive Heat Transfer (Orbit Average, Watts)
/Unit Operating Operating Off Off
Hot Case Cold Case Hot Case Cold Case
AMSU-A2 <5 (TBC) <5 (TBC) <5 (TBC) <5 (TBC)
3.2.6.  Thermo-Elastic Interface

The AMSU-A2 instrument has an aluminium baseplate with a coefficient of thermal expansion of 235 x
10/ deg. C (TBC). The materia of the interfacing brackets is inconel (TBC). The PLM mounting
panel is auminium honeycomb with CFRP skins with a coefficient of thermal expansion of 2.0 x10°/
deg. C (TBC).
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33. THERMAL INTERFACES

3.3.1. Thermal Interface Drawing

The thermal interfaces are defined in Thermal Interface Drawing, TBD.

3.3.2. Conductive Interfaces

The conductive interface is the instrument baseplate which is defined in the Mechanical Interface
Control Drawing (TBD)andin § 2.2.3.

The total thermal conductance between the AMSU-A2 ingtrument and the platform is TBD W/K.

The calculated temper atur es at the AMSU-A2 conductiveinterfacesare TBD.

3.3.3. Radiative Interfaces

The external surfaces of the AMSU-A2 instrument, and the finishes used are given in the Thermal
Interface Drawing (TBD). The AMSU-A2 thermal coatings are illustrated in Figure 3.3/1.

The thermo-optical properties of the finishes are given in the following table :

Surface/ Material Solar Absorptance Infra-Red

BOL EOL Emittance
Silver Teflon Tape 0.07 0.17 0.65
Gold Plate / Gold Tape 0.28 0.32 0.04
Alumunium Kapton Tape (VDA) 0.12 0.17 0.05
MLI (SSM external) 0.07 0.17 0.65
Chemical Conversion Coating 0.47 0.55 0.14

AMSU-A2 Material Therm&Optical Properties (TBC)
The radiative environmental temperatures for AMSU-A2 are TBD

3.34. Thermal Heat Capacity
The thermal heat capacity of AMSU-A2 is TBD J/K.

3.35. Instrument Temperature Measurement

3.3.6. Thermal Mathematical M odels

AMSU-A2 thermal model exists in SINDA/TRASYS. Conversion to ESATAN/ESABASE is being
performed.

3.4. THERMAL ENVIRONMENT CONDITIONS
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Radiator Area Required Calculated Calculated
Face (m?) View Factor View Factor Gebhart
-Ys 0.1013 TBC 0.98 0.8509 0.8801
+Ys 0.1188 TBC 0.51 0.4837 0.5754
AMSU-A2 Radiator Areas and Thermal Fields of View
323 Heater Power Budgets
The heater power budgets for the AMSU-A2 instrument are :
Module Heater Power Budget (Watts)
/Unit Operating Operating Off Off
Hot Case Cold Case Cold Case Safe Mode
AMSU-A2 15.0 15.0
The resistance of the heaters is TBD.
3.24. Instrument Thermal Dissipation
The dissipation of the AMSU-A2 instrument is constant throughout the orbit and is :
Module | Thermal Dissipation (Watts)
/Unit Operating Operating Orbital Contingency |
Stand-by Average Safe Mode
AMSU-A2 | NA 410(TBC) | 41.0(TBO) 0.0

3.2.5. Heat Exchange Budgets
The calculated heat transfer between the platform and the AMSU-A2 instrument for different cases are :
Module l Conductive Heat Transfer (Orbit Average, Watts)
/Unit Operating Operating Off Off
Hot Case Cold Case Hot Case Cold Case
AMSU-A2 | <(@TBC) | <5(TBC) | <5(TBC) |  <5(TBC)
3.2.6. Thermo-Elastic Interface

The AMSU-A2instrument has an duminium baseplate with a coefficient of thermal expansion of 25 x
10/ deg. C (TBC). The material of the interfacing brackets is inconel (TBC). The PLM mounting
parel is aluminium honevcomb with CFRP skins with acoefficient of thermal expansion of 2.0 x 10%/
deg. C (TBC).
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3.3. THERMAL INTERFACES

3.3.1. Thermal Interface Drawing
The thermal interfaces are defined in Thermal Interface Drawing, TBD.

3.3.2. Conductive Interfaces

The conductive interface is the instrument baseplate which is defined in the Mechanical Interface
Control Drawing (TBD) and in $2.23.

The total thermal conductance between the AMSU-A2 instrument and the platform is TBD W/K.
The calculated temperatures at the AMSU-A2 conductive interfaces are TBD.

3.3.3. Radiative I nterfaces

The external surfaces of the AMSU-A2 instrument, and the finishes used are given in the Thermal
Interface Drawing (TBD). The AMSU-A2 thermal coatings are illustrated in Figure 3.3/1.

The thermo-optical properties of the finishes are given in the following tabie :

Surface/ Material Solar Absorptance Infra-Red

BOL EOL Emittance
Silver Teflon Tape 0.07 0.17 0.65
Gold Plate / Gold Tape 0.28 0.32 0.04
Alurmimum Kapton Tape (VDA) 0.12 0.17 0.05
MLI (SSM external) 0.07 0.17 0.65
Chemical Conversion Coating 0.47 0.55 0.14

AMSU-A2 Material Thermo-Optical Properties (TBC)
The radiative environmental temperatures for AMS JA2 are TBD

3.3.4. Thermal Heat Capacity
The thermal heat capacity of AMSU-A2 is TBD JK

3.35  Instrument Temperature Measurement

3.3.6. Thermal Mathematical Models

AMSU-A? thermal model exists in SINDA/TRASYS. Conversion to ESATAN/ESABASE is being
performed

34. THERMAL ENVIRONMENT CONDITIONS



Ref : MMS/MET/TN/160.94

| -2 Rev. : O
MATRA MARCONI SPACE AMSU-A2 Date - September 1991
Page : 107

Siiverised
Teflon

Silverised
Teflon

VDA iy > Aiom

Figure 3.3/1: AMSU-A2 Thermal Coatings
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4. ELECTRICAL INTERFACE DESCRIPTION
4.1. POWER SUPPLY INTERFACES
Power Sources
AMSU-A2 requires to be power supplied with the following buses :
Power Bus Number of Goals TIROS Name
I nterfaces
8 V regulated power bus 3 One for the instrument primary Main regulated bus
power
One for the motors and heaters Pulse load bus
One for the temperature sensors Switched telemetry bus
when the instrument is off
0 V regulated power bus ! One for commands and digital B Interface Bus
command verification telemetry

Voltage range : TBD

Power connection redundancy: TBD

Power Consumption and Modes

Basic Power Consumption LEOP Instr. PLM Fix PLM
ON Safe
+ 28 V regulated power bus :
Pnmary power Off 250W off Off
hlotors and heaters Off 120 w  off Off
Temperature OffTBC| 0.I5W OffTBC |OffTBC
+ 10 V regulated power bus OffTBC| 0.1 w | OffTBC|OffTBC
TOTAL ow 37.25 w OW ow
TBC TBC TBC

4.2. COMMAND AND CONTROL INTERFACES

AMSU-A2 svachronously operates with reference to a 1.248 MHz clock (master clock). One 8 sec
swvnchronization signal shall be provided by the platform.

AMSU-A2 requires 4 pulse discrete and 9 level discrete commands from the platform.

% 1 surviva heaters On / Off command.
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4.3 SCIENCE DATA INTERFACES

16.320 kHz clock
Data enable signal
Digital A data interface

In full scan mode, AMSU-A2 generates 3 16 bytes of measurement data per scan (i.e. during 8 sec.). On
TIROS, 14 words in the AIP minor fiame (so for 100 ms) are alocated to AMSU-A2, and are filled
with 7 pairs of 8-bit words. Hence an apparent raw data rate of 1.120 kbps.

The encapsulation of the 3 16 octets within one source packet result-s in a source packet total length of
330 octets.

The packetized data rate is then 0.330 kbps.

4.4. HOUSEKEEPING TELEMETRY

Analog housekeeping telemetry : 11
Digital housekeeping telemetry (digital B) : 10
Switched telemetry bus thermistor interface : 4

4.5. CONNECTORS AND HARNESS

45.1. Connectors Used at Spacecr aft I nterfaces

4,52, Connectors Used for Inter-Instrument Unit Interface

453. EMC Aspects

454, Cable Harness
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5. EMC / RFC INTERFACE DESCRIPTION
RF Receiver Characteristics
The AMSU-A2 RF receiver has the following specified Characteristics :

CF BW Sensitivity
23.80 GHz 270 MHz -94.8 dBm
31.40 GHz 180 MH=z -96.7 dBm

6. CLEANLINESS AND SPACE ENVIRONMENT DESIGN CONSTRAINTS

6.1. CLEANLINESS REQUIREMENTS AND CONTAMINA fION CONTROL

AMSU includes alubricant reservoir for the bearings that is not sealed and may evaporate (to be
clarified). A class 100 000 room is sufficient.

6.2. RADIATION ENVIRONMENT

6.2.1. Radiation Deposit Dose

6.2.2.  Single Event Upset (SEU) and Latch-Up

6.3. SPACE ENVIRONMENT CONSTRAINTS

6.3.1. Maeteoroid and Space Debris

6.3.2.  Atomic Oxygen
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7. INSTRUMENT DESIGN VERIFICATION DESCRIPTION

7.1 TESTING

72. TEST REQUIREMENTS

721 Electrical Functional Test Description

722. EMC Test Description

7.2.3.  Mechanical and Structural Test Description

7.24.  Thermal Test Description

8. GROUND SUPPORT EQUIPMENT DESCRIPTION

8.1 MECHANICAL GROUND SUPPORT EQUIPMENT

82. ELECTRICAL GROUND SUPPORT EQUIPMENT
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9. GROUND OPERATION DESCRIPTION

9.1. MODEL PHILOSOPHY

9.1.1.  Instrument Structural Model (SM)
None for METOP.

9.1.2. Instrument Engineering Model (EM)
None for METOP.

9.1.3.  Instrument Proto-Flight Model (PFM)
None for METOP.

9.1.4.  Instrument Flight Model (FM)
2 Flight Models are to be delivered for METOP.

9.15.  Hight Spare Model

9.2. DELIVERY TO THE AIV SITE

9.3. INSTRUMENT INTEGRATION

9.4. PURGING REQUIREMENTS

The bearing lubricant reservoir needs to be purged on ground with N2 (to be clarified)

9.5. GROUND ENVIRONMENTAL CONDITIONS

9.6. LAUNCH OPERATIONS
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10. FLIGHT OPERATION DESCRIPTION

10.1. OVERVIEW
AMSU-A2 is continuously on aong the orbit (duty cycle : 100%)

Commissioning and calibration : TBD

10.2. ORBITAL PARAMETERS

10.2.1. Operational Orbit

10.2.2. Pointing Characteristics

103. MISSION OPERATION PHASES

104. OPERATION CONSTRAINTS AND RESPONSIBILITIES

10.4.1. Commandability

10.4.2. Observability

10.4.3. information Provided by the Platform

Once snitched on, AMSU-A2 nomunally proceeds without any requirement for software or parameters

update.

10S. INSTRUMENT OPERATION MANUAL
Fix and Safe Modes

One command switches the insgtrument off and internally park the reflectors
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11. PRODUCT ASSURANCE AND RELIABILITY

Relizbility
Design Lifetime: 3 vears
Reliability : 0.84 for 3 vears

in-Flight Experience : None

12. PROGRAMME AND SCHEDULE
AMSU-A2 is scheduled for a first flight on NOAA-K in 1995
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INSTRUMENT INTERFACE CONTROL DOCUMENT (ICD) OUTLINE

MHS
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1. GENERAL

11 PURPOSE OF THE DOCUMENT

This document is the MI-IS Instrument Interface Control Document Outline. It deals with interface
definition from the instrument to the METOP platform and with MHS responses to the generic METOP
Genera instrument Interface Control Document (GICD).

12 INSTRUMENT PRESENTATION

The Microwave Humudity Sounder MHS is a five channel self calibrating mucrowave scanning
radiometer. The channels in the frequency range 89 to 190 GHz provide a humidity profiling capability.
The measured signals are also sensitive to:

- liquid water in clouds and hence can be used to measure cloud liquid water contents

- graupel and large water droplets in precipitating clouds and hence can provide a qualitative estimate
of precipitation rate.

MHS channel characteristics are the following :

Centre Frequency (GHz) Bandwidth (max.. MHz) Temperature Sensitivity (K)
Hl 89.0 2800 1.00(goal 0.6)
' H2 157.0 2800 1.00 (goal 0.6)
H3 | 183.311 + 1.00 2 x 1000 (DSB) 1.00 (goal 0.6)
H4 183.311 + 3.00 2 x 2000 (DSB) 1.00 (goal 0.6)
1 H3 190.3 11 2200 1 .00 (goal 0.6)

! DSB : Dud Side Band

Scan Type - Continuous

Scan Rate (9) : 2.667

Half Power Antenna Bandwidth (deg.) : 11+10%

Sampling Interval (deg.) : 1.1111 (10/9)

Earth View Pixels per Scan : 90

Scan Angle (deg. with respect to the nadir direction):  + 49.444 deg.
! Overal Swath : + 50 deg.

13. APPLICABLE AND REFERENCE DOCUMENTATION

Applicable Documentation

' General Instrument Interface Control Document - GICD
\Ref. MMS/MET/SPE/JLD/159.94. Iss. 2. dated Sept. 94

Reference Documentation

Unique instrument Interface Specification for the MHS
Ref. 1S-20046415 (MET0372). Preliminary Issue
i Applicable for US platform only and used for METOP for information
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Performance and Functional Specification for the MHS Sounder
Ref. EPS-MI-1S-SPE-93001

MHS Instrument Configuration
Ref. 3175-JA029-25-1(MET0567a & b), dated April 1994

MHS Instrument Baseplate Interface Control Drawing
Ref. 3175-FA002-25-0 (MET0567c¢), dated April 1994

Ref : MMS/MET/TN/160 94
Issue:2  Rev.: 0
Date : September 1991
Page : 119
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2. MECHANICAL INTERFACE DESCRIPTION

2.1 INSTRUMENT PHYSICAL CHARACTERISTICS

2.11. Module/ Unit I dentification

MHS consists of asingle unit.

The Part Number and Identification Code of the MHS instrument are :
PARTNO: TBD
ID CODE: TBD

The location of the labels giving these Part Numbers and Identification Codes are defined in the
Mechanica Interface Control Drawing.

The total envelopeis: L (Veocity) x Wx H (Earth) 750 x 690 x 560 mm.

MHS does not have any deployable part.

2.1.2, Mechanica Interface Control Drawing

The MHS instrument configuration and mechanical interfaces are given in the Mechanical Interface
Control Drawing, TBD.

The MHS configuration is illustrated in Figure 2.1/1.

2.1.3. Mass Properties
M ass

The mass properties of the MHS instrument are given in the following table. The co-ordinate system
used is the Instrument Mounting Interface Reference Frame. Fuys . with the ongin being at the
reference mounting hole location as defined in the Mechanical Interface Control Drawing. TBD (Cf.
drawing). The directions of the Fyus axes are the same as the Spacecraft Reference Frame Fs

Module Basic Mass Centre of Mass Location (=5 mm)
/Unit (0.1 kg, TBC) XMHS YMHS ZMHS
(Sun) (Anti-velocity) (Zenith)
MHS 60.0 kg

MHS Mass Properties

Moments of Inertia

The MHS moments of inertia are as follows. The coordinate system used is the Instrument Mounting
Interface Reference Frame. Faus (TBC), with the origin being at the reference mounting hole location
as defined in the Mechanical Interface Control Drawing. TBD (Cf. drawing). The directions of the Fymus
axes are the same as the Spacecraft Reference Frame Fs. The accuracy of these values is within TBD %
of the total instrument moment of inertia for each axis.
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MHS residual torque from mode! simulations
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Time in seconds
Figure 2.1.4/1 : MHS Residual Torque
2.15  Field of View Definition
MHS boresight is defined as the nadir direction. The instrument field of view definition is:
- one vertex (Cf. drawing)
The beam wadth is based on a0 220 mm circle
- Spacecraft provision
. cross-track scan plane :from 85.0 deg. anti-Sun-war& to 52 deg. Sunwards.

This is the general envelope for + 49.5 deg. scanning and + 85 deg. for anti-Sun
calibration

Orbit plane : = 0 deg (included in the vertex definition)

MHS fidd of view isillustrated in Figure 2.1.5/1
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Module . Moments of Inertia
(kg.m?)
/Unit Ixx Ivy Izz Ixy Ixz Ivz
MHS
MHS Moments of Inertia

2.1.4. Instrument Induced Disturbances

2.1.4.1.  Noa Recurring Transient Events .

TBD

2.1.4.2.  Continuous and Recurring Transient Events

MHS is partiallv momentum compensated. The typical residual torque over 3 sec. along the Y axis
(velocity. scenes are scanned from Sun, through Earth, to space) is illustrated in Figure 2.1.4/1 (from
model simulations). The main assumptions are the following :

- Inerua : 10 g.m? (reflector and shroud)
- Sampling : 432 Hz

- Rupple torque : 13% of torque demand

- Friction : viscous, 0.006 Nm/rad s’}

- Scanning control loop bandwidth : 20 Hz
- Compensation control bandwidth : 20 Hz

- Error on the knowledge of the reflector / shroud inertia : +3%
- Error on the knowledge of the flvwheel : -3%
- Voltage quantization : 12 bits

- Scanning velocity (duning Earth scan) : 60 deg /s

It 1s assumed that the residual torque on the other axes is neghgible.
The static and dvnamic unbalance vaiues on each axis are TBD.

Transient : TBD

2.1.4.3. Induced Disturbance Torque Effect

2.1.44. Flexible Modes
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23. INSTRUMENT MOUNTING ATTACHMENTS

2.2.1. Method

The MHS instrument is mounted directly to a platform nadir (-Z METOP) panel via iso-metric fine
thread titanium bolts, used with GFRP washers (TBC) to provide thermal isolation and passing through
instrument flanges, lugs or structural components which mate with the platform interface.

The bolt size, length and torque required to mount the instrument are :

Module / Unit Bolt Size Length (mm) Torque (Nm) Quantity

MHS

| 2.2.2. Reference Point (Hole)

The definition of the Reference Point / Hole for the MHS instrument is given in the Mechanical
Interface Control Drawing, TBD (Cf. drawing).

2.2.3. Mounting Surfaces

MHS is mounted on its +Z (METOP axis) side. The flatness of the mounting surfaces does not exceed
0 1 mm in 100 mm. The surface roughness of the mounting surfaces are TBD um. Each mounting foot
has an area of TBD mm?.

2.2.4. Matenals

The material of the MHS baseplate and the interfacing platform panel is CFRP.

2.2.5. Interface Loads
The calculated interface loads induced by the MHS instrument are

Module / Unit Shear Tension Compression Moment
(N) (N) N) (Nm)

MHS Baseplate

2.2.6.  Accessibility

There is no specific accessibility requirement for MHS.

2.2.7.  Grounding Point

The locations of the grounding points on the MHS instrument are defined in TBD.
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2.3. POINTING

The pointing requirements for the MHS instrument are expressed at the Instrument Mounting Interface
Reference Frame Fyys -

Absolute Pointing Error (Accuracy) : +0.15 deg. (30)
Absolute Measurement Error (Knowledge) : +0.10 deg. (30)
Absolute Rate Error (Rate) : + 0.003 deg./sec. (30)

24. ALIGNMENT

24.1. Opticalv Reference Cube

The position of the Optical Reference Cube is given in the Mechanical Interface Control Drawing,
TBD. The cube has two alignment surfaces of size 25 x 25 mm? which are viewed from the spacecraft
nadir (-Z), anti-Sun (-X) and anti-velocity (+Y) axes and meet the requirements specified in the GICD

(TBC).

The cube shall be covered with a cover/removed in accordance with TBD prior to launch.

2.4.2.  Alignment Procedure

2.4.3. Co-Alignment

The co-alignment requirements are expressed between the Instrument Mounting Interface Reference
Frames (Fy4; ) of each instrument.

MHS shall be co-aligned with AVHRR/3 to within = 0.05 deg. (30).
Note that the following information can be found in the UIIS (Cf. § 1.3.):

- Co-alignment Requirements : + 0.30 deg. (30) with respect to AMSU-A}
+ 0.36 deg. (30) with respect to AMSU-A2

2.5. STRUCTURAL DESIGN

2.5.1 Limit Loads

The structural design analvses are TBD.

2.5.2.  Quasi-Static Design Loads

2.53.  Safety Factors

The calculated safety factors are TBD.
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2.5.4. Dynamic Characteristics and Structural Mathematical Model

The structural dynamic analyses arc reported in TBD. The first natural frequency of the MHS
" instrument is 108 Hz (without margin, PDR status, the specification is 100 Hz), this value having been
established by analysis.

As this frequency is above the 100 Hz limit, no mechanical interface model is required.

2.6. MECHANISMS

2.6.1.  Functional Description

A scan mechanism consisting of two motors with their associated drive electronics, supports a single
reflector assembly and performs scanning of the instrument field of view across the Earth, an on-board
hot calibration target and cold space for calibration, every 2.67 seconds. One of the motor dnives a
compensating fly-wheel providing momentum compensation to limit the perturbation induced on the
platform by the scan motion.

2.6.2. Performances

2.7. PYROS

None.

2.8. INSTRUMENT APERTURE COVERS

2.8.1. Sensor Covers

None

2.8.2. Removable Covers (Non-Flight Items)
Reflector / shroud cover : TBD.

2.8.3. Deployable Covers (Flight Items)

None
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3. THERMAL INTERFACE DESCRIPTION

3.1. INSTRUMENT THERMAL CONTROL CONCEPT

3.1.1 Category

MHS is a Category A instrument. Its thermal control is autonomous with dedicated radiators on the
instrument sides.

3.1.2.  Thermal Control Philosophy

Normal Operation

During nominal operating modes, MHS uses passive radiators to reject its heat to space.
Contingency Modes

During the contingency modes the instrument is switched off, and internal heaters are required to supply
make-up heat. The temperature of MHS will be maintained within its survival limits by these heaters
which are controlled using thermostats with a lower set point of -10 deg. C.

32. INSTRUMENT TEMPERATURE REQUIREMENTS AND THERMAL CONTROL
BUDGETS

3.2.1.  Temperature at Conductive Interface

Temperature Ranges

The operating, non-operating and switch-on temperatures for the MHS instrument are defined below.
The Temperature Reference Point at which these temperatures apply is defined in TBD.

Deg. C Operation Non-Operation Switch-On
MHS Min. Max. Min. Max. Min.
Acceptance -5 +30 -20 +40 -10
Qualification (TBC) -10 +35 -25 +45 -15

Stability Requirements

There is no stability requirement for MHS.

3.2.2. Radiative Interface

The MHS passive radiator areas and the thermal views to space are given below
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3.2.6. Thermo-Elastic Interface

The MHS instrument has an CFRP baseplate with a coefficient of thermal expansion of 2.0 x 10°/ deg.
C (TBC). The PLM mounting panel is aluminium honeycomb with CFRP skins with a coefficient of
thermal expansion of 2.0 x 10 / deg. C (TBC).

33. THERMAL INTERFACES

3.3.1. Thermal Interface Drawing
The thermal interfaces are defined in Thermal Interface Drawing, TBD.

3.3.2. Conductive Interfaces

The conductive interface is the instrument baseplate which is defined in the Mechanical Interface
Control Drawing (TBD), and in § 2.2.3.

The total thermal conductance between the MHS instrument and the platform is TBD W/K.
The calculated temperatures at the MHS conductive interfaces are TBD.

3.3.3. Radiative Interfaces

The external surfaces of the MHS instrument, and the finishes used are given in the Thermal Interface
Drawing (TBD). The MHS thermal coatings are illustrated in Figure 3.3/1.

The thermo-optical properties of the finishes are given in the following table :

Surface / Material Solar Absorptance Infra-Red

BOL EOL Emittance
SSM 0.09 0.18 0.79
White Paint 0.19 0.55 0.88
MLI (Kapton / VDA) 0.39 0.59 0.62

MHS Material Thermo-Optical Properties

The radiative environmental temperatures for MHS are TBD.

3.3.4.  Thermal Heat Capacity
The thermal! heat capacity of MHS 1s TBD J/K.

3.3.5. Instrument Temperature Measurement

| 3 survival thermistors. directly read by the platform.
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Figure 3.3/1 : MHS Thermal Coatings
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3.3.6. Thermal Mathematical Models

A reduced thermal mathematical model in ESATAN (V3.5 or higher) including thermal case
_ description, geometrical model and node description, is to be delivered.

3.4. THERMAL ENVIRONMENT CONDITIONS
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4. ELECTRICAL INTERFACE DESCRIPTION

4.1. POWER SUPPLY INTERFACES

MHS input voltage is either 22-37 Volts DC unregulated or +28 V regulated (measured at MHS
terminals). METOP uses unregulated power buses.

The following power buses are provided by the platform :

- equipment power bus, nominal and redundant

- equipment heater power bus, nomunal and redundant (for non-operating modes)
- ICU (Instrument Control Unit) power bus, nominal and redundant

- ICU heater power bus, nominal and redundant (for non-operating modes)

The total power consumption is 90 W in nominal operations (basic value).

42. COMMAND AND CONTROL INTERFACES

The command and control of the instrument is performed via the PLM OBDH bus. MHS ICU has a
nominal and redundant connection to the OBDH via a DBU supplied by the platform.

In case of emergency, MHS can receive the following signals :
- equipment switch off line (EQU SOL), nominal and redundant
- depoinung signal line (DSL), nomunal and redundant

4.3 SCIENCE DATA INTERFACES

MHS generates packetized measurement data, that are transferred to the PLM data handling subsystem
via a nominal and redundant connection through low bit rate data interface.

MHS generates 1280-octet length science data source packet per scan (ie. for 2.667 sec.). The
packetized data rate 1s then 3.840 kbps.

4.4. HOUSEKEEPING TELEMETRY

Thermistor interface -
- thermustor for equipment. nominal and redundant connection to the platform
- thermistor for ICU. nominal and redundant connection to the platform

4.5. CONNECTORS AND HARNESS

4.5.1. Connectors Used at Spacecraft Interfaces

4.5.2. Connectors Used for Inter-Instrument Unit Interface
45.3. EMC Aspects

4.54. Cable Harness



MATRA MARCONI SPACE MHS

5. EMC /RFC INTERFACE DESCRIPTION

Ref

Issue
Date
Page

MMS/MET/TN/160.94
2 Rev.: O
September 1994

134

6. CLEANLINESS AND SPACE ENVIRONMENT DESIGN CONSTRAINTS

6.1.

6.2.

6.2.1.

6.2.2.

6.3.

6.3.1.

6.3.2.

CLEANLINESS REQUIREMENTS AND CONTAMINATION CONTROL

RADIATION ENVIRONMENT
Radiation Deposit Dose

Single Event Upset (SEU) and Latch-Up

SPACE ENVIRONMENT CONSTRAINTS
Meteoroid and Space Debris

Atomic Oxygen
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7. INSTRUMENT DESIGN VERIFICATION DESCRIPTION

7.1. TESTING

72. TEST REQUIREMENTS
72.1. Electrical Functional Test Description
7.2.2. EMC Test Description

7.2.3. Mechanical and Structural Test Description

No acoustic test is foreseen by MHS verification plan.

72.4. Thermal Test Description

\ The MHS FM unit will go through 4 thermal vacuum cvcle test.

Page

MMS/MET/TN/160.94
2 Rev.: O

135

~——



MATRA MARCONI SPACE MHS lssue

Ref

Date

Page

8. GROUND SUPPORT EQUIPMENT DESCRIPTION

8.1.

8.2

MECHANICAL GROUND SUPPORT EQUIPMENT

ELECTRICAL GROUND SUPPORT EQUIPMENT

9. GROUND OPERATION DESCRIPTION

9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

MODEL PHILOSOPHY
Instrument Structural Model (SM)
Instrument Engineering Model (EM)
Instrument Proto-Flight Model (PFM)
Instrument Flight Model (FM)
Flight Spare Model
DELIVERY TO THE AIV SITE
INSTRUMENT INTEGRATION
PURGING REQUIREMENTS

GROUND ENVIRONMENTAL CONDITIONS

LAUNCH OPERATIONS

MMS/MET/TN/160.94
2 Rev.: 0O
September 1994
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10. FLIGHT OPERATION DESCRIPTION

10.1. OVERVIEW
MHS is continuously on along the orbit (duty cvcle : 100%).

Commissioning and calibration : TBD

10.2. ORBITAL PARAMETERS

10.2.1. Operational Orbit

10.2.2. Pointing Characteristics

10.3. MISSION OPERATION PHASES

10.4. OPERATION CONSTRAINTS AND RESPONSIBILITIES

10.4.1. Commandability

10.4.2. Observability

10.4.3. Information Provided by the Platform

Once switched on, MHS nominally proceeds without any requirement for software or parameters

update.

10.5. INSTRUMENT OPERATION MANUAL
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11. PRODUCT ASSURANCE AND RELIABILITY

Reliability
Design Lifetime : 3 vears
Reliability : 0.8 over 4 vears (specification)

12 PROGRAMME AND SCHEDULE

System Concept Review (SCR) May 1994
Preliminary Design Review (PDR) September 1994
Critical Design Review (CDR) March 1996
PFM delivery Julv 1997 |

FM2, FM3 and FM4 (spare) delivenes February 1998, September 1998 and Apnl 1999
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1. GENERAL

1.1.  PURPOSE OF THE DOCUMENT

This document is the DCS/2 Instrument Interface Control Document Outline. It deals with interface
definition from the instrument to the METOP platform and with DCS/2 responses to the generic
METOP General Instrument Interface Control Document (GICD).

1.2, INSTRUMENT PRESENTATION

The Data Collection Svstem DCS, known also as ARGOS, collects data from platform transmitters
(PTTs) located on continents and oceans in VHF frequency. Marine PTTs located on buoys transmit
oceanographic data, ship PTTs weather and oceanographic data ; land based PTTs provide
meteorological and hydrological data and those on balloons atmospheric data. DCS uses Doppler
information to enable the location of PTTs. The data are stored on board the satellite for later
transmission to ground. The DCS svstem consists of :

- a Receiving and Power Unit RPU
UHF receiver
Detection Unit (FFT)
Control Unit
Power and Control Unit

- a Signal Processing Unit SPU
2 x 4 Data Receiver Units (DRU)

- one VHF receive antenna UDA

The performance characteristics are the following :

Receive Frequency : 401.65 +0.04 MHz

Receiver Bandwidth (1 dB): 80 kHz

MDS : -108 to0 -131 dBm

Frequency Stability : 2E-9 over TBD sec.

Receive antenna (UDA) : quadrifilar helix antenna

Max. gain: + 6 dB1 at 60 deg. off nadir
-3 dB1 at nadir

The UDA antenna has a pattern as illustrated in Figure 1.2/1.

A Data Collection Platform command down link (460-470 MHz) from SPU (DRU) through UDA is

under consideration.
|
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1.3. APPLICABLE AND REFERENCE DOCUMENTATION
Applicable Documentation

General Instrument Interface Control Document - GICD
Ref. MMS/MET/SPE/ILD/159.94, Iss. 2, dated Sept. 94

Reference Documentation

Unique Interface Specification for DCS-2
Ref 1S-3267402 (MET0030), dated July 1992, rev. A

DCS-2 RPU Interface Control Drawing
Ref. 8212-200E380 (MET0015), dated December 1990

DCS-2 SPU Interface Control Drawing
Ref. 8212-300E380 (METO0016). dated December 1990

MMS/MET/TN/160.94
2 Rev.: 0
Septembre 1994
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2. MECHANICAL INTERFACE DESCRIPTION

2.1. INSTRUMENT PHYSICAL CHARACTERISTICS

2.1.1. Module / Unit Identification

DCS-2 is composed of three scparate electronics units, that are linked with an antenna (UDA) that 1s
part of the platform. The 3 electronic units have the following part numbers and identification codes :

Module / Unit Acronym Part No ID Code
Receiving and Power Unit RPU

Signal Processing Unit -A SPU-A

Signal Processing Unit -B ‘ SPU-B

All three units are mounted on a radiator panel within the METOP Service Module (SVM) (I'BC).
The overall dimensions of the units are :

Module / Unit L {(Velocity) W H (Earth)
RPU 195 mm 365 mm 280 mm
SPU-A 195 mm 310 mm 280 mm
SPU-B 195 mm 310 mm 280 mm

The UDA antenna. diplexers and filters are provided by the platform.

There is a requirement that the total insertion loss is less than 2 dB between the UDA and the DCS/2
units To meet this requirement, it has been assumed that the RPU shall be within 2 metre distance from
the UDA.

21.2. Mechanical Interface Control Drawing

The DCS/2 instrument unit configuration and mechanical interfaces are given in the Mechanical
Interface Control Drawings. TBD.

2.1.3. Mass Properties

Mass

The mass properties of the DCS/2 units are given in the following table. The co-ordinate systems used
are the Instrument Mounting Interface Reference Frames for each unit, Fpcs.i , with the origin being at
the reference mounting hole location as defined in the Mechanical Interface Control Drawing, TBD. The
directions of the Fpcs.; axes are the same as the Spacecraft Reference Frame Fs.

The antenna. UHF devices and the related hamess masses shall be accounted for in the platform
budgets.
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Module Basic Mass Centre of Mass Location (x S mm)
{Unit (0.1 kg, TBC) Xpesi Ypesi Zpcsy
(Sun) (Ant-velocity) (Zenith)
RPU 13.8kg
SPU-A 12.6 kg
SPU-B 12.6 kg
TOTAL : 39.0kg
DCS/”2 Mass Properties

Moments of Inertia

The DCS/2 moments of inertia are given in the following table. The co-ordinate systems used are the
Instrument Mounting Interface Reference Frames for each unit, Fpcs.i , with the origin being at the
reference mounting hole location as defined in the Mechanical Interface Control Drawing, TBD. The
directions of the Fpcs.; axes are the same as the Spacecraft Reference Frame Fs. The accuracy of these

values is within TBD % of the total instrument moment of inertia for each axis.

Module Moments of Inertia (kg.m? )
/Unit Ixx Iyy Clzz Ixy Ixz Iyz

RPU

SPU-A

SPU-B

DCS72 Moments of Inertia

2.1.4. Instrument l‘nduced Disturbances
None
2.1.5. Field of View Definition

None (the spacecraft will however provide antenna clear field of view).

2.2,

2.2.1.

Method

INSTRUMENT MOUNTING ATTACHMENTS

The DCS/2 units are mounted to the SVM panel (TBC) using bolts

The bolt size, length and torque required to mount the umits are :




Ref - MMS/MET/TN/160.94

MATRA MARCONI SPACE DCS2 IS:: 2Se ptemRb:'me
Page : 147
Module / Unit Bolt Size Length (mm) | Torque (Nm) Quantity ‘l
RPU 12
SPU-A
SPU-B

2.2.2. Reference Point (Hole)

The definitions of the Reference Points / Holes for the DCS/2 units are given in the Mechanical
Interface Control Drawings, TBD.

2.2.3. Mounting Surfaces

The mounting surfaces for the DCS/2 units are the unit baseplates (W x H). The three units can be
accommodated in any direction. The flatness of the mounting surfaces does not exceed TBD mm in
100 mm. The surface roughness of the mounting surfaces are TBD pum. Each mounting foot has an area
of TBD mm?.

2.2.4. Materials

The material of the DCS/2 baseplates 1s aluminium alloy with a TBD finish. The SVM mounting
interface is an alun.inium honeycomb panel with aluminium facing skins.

2.2.5. Interface Loads

The calculated interface loads induced by the DCS/2 units are :

Module / Unit Shear { Tension l Compression Moment
™N) (N) (N) (Nm)

RPU

SPU-A ' J

SPU-B

2.2.6.  Accessibility

Connectors : TBD.

2.2.7.  Grounding Point

The locations of the grounding points on the DCS/2 units are defined in TBD.

2.3.  POINTING

None (antenna pointing is a platform 1ssue)
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2.4. ALIGNMENT

2.4.1.  Optical Reference Cube

2.4.2. Alignment Procedure

24.3. Co-Alignment

2.5. STRUCTURAL DESIGN

2.5.1 Limit Loads
The structural design analyses are TBD.

2.5.2.  Quasi-Static Loads

2.5.3. Safety Factors
The calculated safety factors are TBD.

Ref

Issue
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2.54. Dynamic Characteristics and Structural Mathematical Model

The structural dvnamic analyses are reported in TBD. The first natural frequencies of the DCS/2

instrument units are above 350 Hz.

MMS/MET/TN/160.94
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As this frequency is above the 100 Hz limit, no mechanical interface model 1s required.

2.6. MECHANISMS

DCS-2 contains no movable mechanism.

2.7.  PYROS

None.

2.8. INSTRUMENT APERTURE COVERS

None
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3. THERMAL INTERFACE DESCRIPTION

3.1.

3.1.1.

The RPU, SPU-A and SPU-B units are all Category B units (collectively

3.1.2.

The internal thermal design of the units is such that the majority
the unit baseplates. Thermal interface filler is used to ensure good
baseplates and the radiator panels on which the units are mounted.

The exterior of the units is black painted to facil

Category

Thermal Control Philosophy

platform (Service Module).

The temperature of the units 1s

3.2.

3.2.1.

Temperature Ranges

The operating, n
32/1 and 3.2/2. The Temperature Reference Point at which these tem

INSTRUMENT TEMPE
BUDGETS

DCS/2

Temperature at Conductive Interface

INSTRUMENT THERMAL CONTROL CONCEPT

on-operating and switch-on temperatures for the

Ref

Issue @ 2

Date
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controlled).

MMS/MET/TN/160.94

Rev.: O

Septembre 1994

controlied by the SVM (TBC) thermal control subsystem.

RATURE REQUIREMENTS AND THERMAL CONTROL

of the unit dissipation is conducted to
thermal conductance between the unit

itate some heat loss by radiation to the interior of the

DCS/2 units are defined in Tables

peratures apply 1s defined in TBD.

Deg. C Operation Non-Operation Switch-On
DCS/2 Min. Max. Min. Max. Min.
RPU -5 +43 -30 +60 -10
SPU-A -3 +45 -30 +60 -10
SPU-B -5 +45 -30 +60 -10
Table 3.2/1 : DCS/2 Unit Acceptance Temperatures
Deg. C l Operation Non-Operation Switch-On J
DCS/2 | Min. Max. Min. | Max. Min. |
RPU -10 +50 35 l +65 15 J
SPU-A 110 +50 33 \ +65 -15 \
SPU-B -10 +50 35 l +65 \ 15 ‘

Stability Requirements

There is no temperature stability requirement for the DCS/2 units.

Table 3.2/1 : DCS/2 Unit Qualification Temperatures (TBC)
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The sides of the units are black painted to facilitate radiation exchange with the platform interior.

3.2.3.  Heater Power Budgets

None.

3.2.4. Instrument Thermal Dissipation

The total thermal dissipation of the DCS/2 units is 30.2 W. The individual unit thermal dissipations are
TBD. The redundancy scheme, if any, between SPU-A and SPU-B shall be specified.

The dissipations of the DCS/2 units are constant throughout the orbit and are

Moduie Thermal Dissipation (Watts)
/Unit Operating Operating Orbital Contingency /
Stand-by Average Safe Mode
RPU
SPU-A
SPU-B

3.2.5. Heat Exchange Budgets

The calculated heat transfer between the platform and the DCS/2 units for different cases are :

Module Operative Heat Transfer (Orbit Average, Watts)
/ Unit Conductive Conductive Radiative Radiative
Hot Case Cold Case Hot Case Cold Case
RPU TBD TBD TBD TBD
SPU-A TBD TBD TBD TBD
SPU-B TBD TBD TBD TBD

3.2.6. Thermo-Elastic Interface

The DCS/2 units baseplates have an aluminium baseplate with a coefficient of thermal expansion of 25
x 10° / deg. C (TBC) The SVM interfacing structure for all the units is aluminium honevcomb or
doublers with a coefficient of thermal expansion of 25.0 x 10°/ deg. C (TBC).
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33. THERMAL INTERFACES

3.3.1. Thermal Interface Drawing
The thermal interfaces are defined in Therma! Interface Drawing, TBD.

3.3.2. Conductive Interfaces

The conductive interfaces for the DCS/2 units are defined in the Mechanical Interface Control Drawing
(TBD)andin § 2.2.3. A thermal interface filler will be used between the units and the SVM panel. The
contact areas of the DCS/2 units are :

- RPU TBD mm?
- SPU-A TBD mm?
- SPU-B TBD mm?

The calculated temperatures at the DCS/2 units conductive interfaces are TBD.

3.3.3. Radiative Interfaces

The external surfaces of the DCS/2 units is black paint with an emittance of 0.9 (TBC). The interior of
the SVM is also black painted with the exception of the black CFRP central cone.

The radiative environmental temperatures for the DCS/2 units are TBD.

3.3.4. Thermal Heat Capacity
The thermal heat capacities of the DCS/2 units are TBD J/K.

3.3.5. Instrument Temperature Measurement

3.3.6. Thermal Mathematical Models

3.4. THERMAL ENVIRONMENT CONDITIONS
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4. ELECTRICAL INTERFACE DESCRIPTION

4.1. POWER SUPPLY INTERFACES

Power Sources

DCS/2 requires to be power supplied with the following buses :

Power Bus Number of Goals TIROS Name
Interfaces

+ 28 V regulated power bus 2 One for the instrument primary Main regulated bus
power
One for the temperature sensors Switched telemetry bus
when the instrument is off

+ 10 V regulated power bus 1 One for commands and digital B Interface Bus
command venfication telemetry

Voltage range : TBD

Power connection redundancy : TBD

Power Consumption and Modes

RPU basic power : TBD
SPU-A basic power :  TBD
SPU-B basic power :  TBD

(TOTAL : 27.445 W_ Instrument ON)

4.2. COMMAND AND CONTROL INTERFACES
No svnchronization clock. Synchronization signal : a major frame synchronization pulse, every 32 sec.

Pulse discrete commands : 24 (no level discrete command)

4.3 SCIENCE DATA INTERFACES

8.320 kHz clock
Data enable signal
Digital A data interface

On TIROS. DCS/2 generates 32 8-bit TIP words for 100 ms, hence an apparent raw data rate of
2.560 kbps.

However. DCS-2 message length varies from 16 to 44 words upon the number of sensors (one to eight)
contained in the platform transmission (note that one sensor requires four words).

With no complementary information. a data rate of 2.560 kbps 1s considered.
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44. HOUSEKEEPING TELEMETRY

Analog housekeeping telemetry 9
Digital housekeeping telemetry (digital B) : 15
Switched telemetry bus thermistor interface : 4

45. CONNECTORS AND HARNESS

45.1. Connectors Used at Spacecraft Interfaces

4.5.2. Connectors Used for Inter-Instrument Unit Interface

4.5.3. EMC Aspects

4.5.4. Cable Harness
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5. EMC / RFC INTERFACE DESCRIPTION

Conducted Susceptibility Through Antenna

Below are specified the unwanted signals coming by conduction from the antenna to the receiver input.

The following values are :

Ref : MMS/MET/TN/160.94

Issue © 2

Date : Septembre 1994
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- the maximum level for anv emission generated by the spacecraft ©

- the maximum level of emission the instrument can withstand.

Level at the receiver input (dBm) Frequency (MHz)
0 1-15

-20 15-375
-60 375-385
-100 385 -396
-125 396 - 401.570
-150 401.570 - 401.730
-125 401.730 - 406
-100 406 - 411
-60 411 - 425
-20 425 -1000
-17 1000 - 10000

6. CLEANLINESS AND SPACE ENVIRONMENT DESIGN CONSTRAINTS

6.1. CLEANLINESS REQUIREMENTS AND CONTAMINATION CONTROL

6.2. RADIATION ENVIRONMENT
6.2.1.  Radiation Deposit Dose

6.2.2.  Single Event Upset (SEU) and Latch-Up

6.3. SPACE ENVIRONMENT CONSTRAINTS
6.3.1.  Meteoroid and Space Debris

6.3.2.  Atomic Oxygen
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7. INSTRUMENT DESIGN VERIFICATION DESCRIPTION

7.1. TESTING

7.2. TEST REQUIREMENTS

72.1.  Electrical Functional Test Description

7.2.2. EMC Test Description

7.2.3. Mechanical and Structural Test Description

7.2.3.1.  Quasi-Static Test

7.2.3.2.  Dynamic Model Validation

7.2.3.3.  Vibration Tests

Sinus

DCS goes trough high level sinus which levels are :
NOAA Qualificanion levels :

MMS/MET/TN/160.94
2 Rev.: O
Septembre 1994
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In the thrust direction. 10 g up to 60 Hz and 3 g from 60 to 2000 Hz.
In the two lateral directions, 6 g up to 60 Hz and 2.5 g from 60 to 2000 Hz.

Those values are below the profile requested by METOP. The levels should be increased for

qualification to (Cf. GICD) :

Sto 18 Hz +]1 mm
18 1o 60 Hz +l5¢g
60 to 100 Hz +6 g

Duration 2 Oct/min

Random Vibrations
Starus on NOAA levels
The Random levels for DCS/2 are .



MATRA MARCONI SPACE

Qualification Levels

DCS/2

Ref : MMS/MET/TN/160.94
Issue : 2 Rev.: O

Date Septembre 1994

Page

156

Axis perpendicular to mounting plane Horizontal axes 1 & 2 (in the mounting plane)
Frequency | Power Spectral Slope Frequency | Power Spectral Slope
Range (Hz) | Density g/Hz | (dB/Oct) Range (Hz) | Densitvg/Hz | (dB/Oct)
20t0 75 0.025 20t0 75 0.011
75to0 150 +10 75 to 150 +10
150 to 500 0.25 150 to 500 0.11
500 to 2000 -7 500 to 2000 -7
Overall level { Duration 1 min Overall level | Duration 1 min
13.3 g ms per axis 8.8 g rms per axis

Acceptance Levels

Axis perpendicular to mounting plane Horizontal axes 1 & 2 (in the mounting plane)
Frequency | Power Spectral Slope Frequency | Power Spectral Slope
Range (Hz) | Density g/Hz | (dB/Oct.) Range (Hz) | Densityg’/Hz | (dB/Oct.)

201075 0.011 20t0 75 0.005 '
7510150 +10 75to0 150 +10
150 to 500 0.11 150 to0 500 0.05

300 1o 2000 -7 500 to 2000 -7
Overall level | Duration | min Overall level | Duration | min
8.8 g rms per axis 5A9gml15 per axis
METOP Required Levels

The application of the METOP GICD levels produces for DCS units of 12/14 kg the following levels
Qualification Levels

Perpendicular to mounting plane

Frequency (Hz) 20 to 100 100 to 400 400 to 2000

Power Density +3 dB/Oct 0.123 g'/Hz -3 dB/Oct.
Two axes parallel to mounting plane

Frequency (Hz) 2010 100 100 to 200 200 to 2000

Power Density +3 dB/Oct 0.123 g'/Hz -3 dB/Oct.
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The comparison can be seen in the figure below:

DCS (12-14 kg) Random Vibration

DCS vertical Qual ———
DCS lateral Qual ~
METOP vertical Qual
METOP lateral Qual ===
0.5
025
Vo
) | N
ol . ST - N
) sugal Y A o —g11 1
71 \‘\ .
— t _:'; \.\\ - ke
PSD (g*/Hz) "Liz& \\
0.01 S AT SIS R O ? ! \
ﬁ ]
0.005 E -
|
2001 | \ J 1 l

10 50 100 500 1000 2000
Frequency (Hz)

The qualification values requested by METOP are well below the request by NOAA both for vertical
and lateral directions. Just in the low frequency range below 100 Hz. NOAA asks for lower values.
These range has little energy and it applies at a frequency that is well below the first natural frequency
of the instrument; so its impact on the instrument will be small.

Then the NOAA requested random test levels of DCS are acceptable for METOP.

7.2.3.4. Acoustic Test

7.2.4.  Thermal Test Description
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8. GROUND SUPPORT EQUIPMENT DESCRIPTION

8.1. MECHANICAL GROUND SUPPORT EQUIPMENT

8.2. ELECTRICAL GROUND SUPPORT EQUIPMENT

9. GROUND OPERATION DESCRIPTION

9.1. MODEL PHILOSOPHY

9.1.1. Instrument Structural Model (SM)
None for METOP.

9.1.2. Instrument Engineering Model (EM)
None for METOP.

9.1.3. Instrument Proto-Flight Model (PFM)
None for METOP.

9.1.4. Instrument Flight Model (FM)
2 Flight Models are to be delivered for METOP.

9.1.5.  Flight Spare Model

9.2. DELIVERY TO THE AIV SITE

9.3. INSTRUMENT INTEGRATION

9.4. PURGING REQUIREMENTS

95. GROUND ENVIRONMENTAL CONDITIONS

9.6. LAUNCH OPERATIONS

Issue
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10. FLIGHT OPERATION DESCRIPTION

10.1. OVERVIEW
DCS/2 is continuously on along the orbit (duty cvcle : 100%).

10.2. ORBITAL PARAMETERS

10.2.1. Operational Orbit

10.2.2. Pointing Characteristics

10.3. MISSION OPERATION PHASES

10.4. OPERATION CONSTRAINTS AND RESPONSIBILITIES

10.4.1. Commandability

10.4.2. Observability

10.4.3. Information Provided by the Platform

Once switched on, DCS/2 nominally proceeds without any requirement for software or parameters
update.

10.5. INSTRUMENT OPERATION MANUAL
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11.  PRODUCT ASSURANCE AND RELIABILITY

Reliability

Design Lifetime : 3 years
Reliability : TBD

Flight Expenience : More than 3 vears

12. PROGRAMME AND SCHEDULE
DCS/2 is scheduled for a first flight on NOAA-K in 1995.
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INSTRUMENT INTERFACE CONTROL DOCUMENT (ICD) OUTLINE

1ASI
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1. GENERAL

1.1. PURPOSE OF THE DOCUMENT

This document is the IASI Instrument Interface Control Document Outline. It deals with interface
definition from the instrument to the METOP platform and with IASI responses to the generic METOP
General Instrument Interface Control Document (GICD).

1.2. INSTRUMENT PRESENTATION
IASI stands for Infrared Atmospheric Sounder Interferometer.

IASI is an infrared Fourier transform spectrometer performing a night and day passive remote sensing
of the atmosphere within 3.5 to 15.5 um range. 1ASI includes an "integrated imaging system" which
allows characterization of cloudiness inside the IFOV. The total field of view is * 49 deg. from nadir.

Measurements on cold reference targets (two views to the space are accommodated) and hot reference
target (on-board black body) are taken every 8 seconds for the updatirg of calibration tables.

IASI transmits to the Earth calibrated spectrum of the atmospheric column with :
- a 25 km sampling distance at sub satellite point ;

- 2 0.25 cm’! unapodized spectral resolution (0.01 cm! absolute accuracy) ;

- a | K absolute radiometric accuracy.

IASI has 2 x 2 matrix of IFOV sampled at each mirror position (30 mirror positions in Earth view).

IFOV (deg.) : 1.25 (circular)

Sampling Interval (deg ) 33

Earth View Pixels per Scan: 30

Swath (deg. with respect to the nadir direction) : + 48.675 deg,’
IASI IFOV shall be co-registrated with AMSU ones (TBC).

1.3. APPLICABLE AND REFERENCE DOCUMENTATION
Applicable Documentation

General Instrument Interface Control Document - GICD
Ref MMS/MET/SPE/JLD/159.94, Iss. 2, dated Sept. 94

Reference Documentation

IASI Instrument Data List
Ref IA-TN-1.0-61-IPT (MET0034). dated June 1993, Iss. |
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2. MECHANICAL INTERFACE DESCRIPTION

2.1. INSTRUMENT PHYSICAL CHARACTERISTICS

2.1.1. Module / Unit Identification

IASI is composed of three separated modules with the following part numbers and identification codes :

Module / Unit Acronym Part No ID Code
Sensor Module -

Main Electronics Module MEM

Secondary Electronics Module SEM

The Sensor Module and SEM are located on the anti-Sun floor of the spacecraft and the MEM 1is
located inside the PLM. The Sensor Module has a deployable cover which is deploved in orbit. The
maximum distance allowed between both electronic modules is 2 metres (T BC).

The overall dimensions of the units are :

Module / Unit L (Velocity) W H (Earth)
Sensor Module - Stowed

Sensor Module - Deploved 928 mm 1443 mm 798 mm
MEM 490 mm 655 mm 260 mm
SEM 600 mm 500 mm . 350 mm

These dimensions include MLI blankets.
The harness between the LASI units will be supplied by the Instrument (TBC).

2.1.2. Mechanical Interface Control Drawing

The IAS! instrument configuration and mechanical interfaces are given in the Mechanical Interface
Control Drawing, TBD.

The LASI sensor module deploved configuration is illustrated in Figure 2.1/1.

2.1.3.  Mass Properties
Mass

The mass properties of the IASI instrument are given in Table 2.1/1. The mass values are with a 20%
contingency. The co-ordinate systems used are the Instrument Mounting Interface Reference Frames for
each module. Fiaspi . with the origin being at the reference mounting hole location as defined in the
Mechanical Interface Control Drawing, TBD (Cf. drawing for the sensor module). The directions of the
F|asi. axes are the same as the Spacecraft Reference Frame Fs.
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Figure 2.1/1 : IASI Sensor Configuration and Field of View
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Module Current Mass Centre of Mass Location (£ S mm)
/Unit (£ 0.1 kg, TBC) Xpasi4 Yiasid Zyasi4
(Sun) (Anti-velocity) (Zenuth)
Sensor Module - 99.8 kg -518 mm + 429 mm - 383 mm
Stowed
Sensor Module - 99.8 kg TBD TBD
Deploved
MEM 273 kg 327.5 mm 245 mm 130 mm
SEM 205 kg 250 mm 300 mm 175 mm
TOTAL : 147.6 kg

Moments of Inertia

Table 2.1/1 : IASI Mass Properties

The IASI moments of inertia are given in Table 2.1/2. The mass values are with a 20% contingency.

The co-ordinate svstems used are the Instrument Mounting Interface Reference Frames for each module,
Fiasii (TBC), with the origin being at the reference mounting hole location as defined in the Mechanical
Interface Control Drawing, TBD (Cf. drawing for the sensor module). The directions of the Fyas.i axes
are the same as the Spacecraft Reference Frame Fs. The accuracy of these values is within TBD % of

the total instrument moment of inertia for each axis.

Module Moments of Inertia (kg.m?)

/Unit Ixx Iy Izz Ixy Ixz Iyz
Sensor Module - TBD TBD TBD TBD TBD TBD
Stowed
Sensor Module - 9.75 12.6 17.2 -0.8 0.2 -0.2
Deploved
MEM 0.53 0.86 1.2 0.0 0.0 0.0
SEM 0.86 0.67 1.1 0.0 0.0 0.0 J

Table 2.1/2 : IASI Moments of Inertia
2.1.4.  Instrument Induced Disturbances

2.1.4.1.

Cooler Door Opening

TBD

Non Recurring Transient Events
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2.1.4.2.  Continuous and Recurring Transient Events

Motion of the scanning mirror

Time measurement simulation outputs are illustrated in Figure 2.1/2 for the torque profile on the Y axis
(scenes are scanned from Sun, through Earth, to space) over a period of 8 sec. The static and dynamic
unbalance values on each axis are TBD.

Motion of one of the two cube corners (interferometer)
The definition of the displacements is illustrated in Figure 2.1/3. The disturbance force is illustrated in
Figure 2.1/4, by a FFT sampled at 0.1 Hz.

Transient : TBD

2.1.4.3.  Induced Disturbance Torque Effect

2.1.4.4. Flexible Modes

2.1.5.  Field of View Definition

IASI boresight is defined as the nadir direction. The instrument field of view definition is :
- Vertex : Cf. drawing

- The spacecraft allocation is + 49.5 deg.

Calibration field of view to deep space

- first sight at 84 ° from nadir

- second sight at 0 © anti nadir.

[ASI fields of view are illustrated in Figure 2.1/1.
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IASI torque scanning cycle can be represented in the following way :

1 C4
C1
- C3
C2
TO
T T2 —
29 cycles (T1 + T2) = 6269.8 ms

ITT1+T2= >
7999.4 ms

With Cl = 0.0469 Nm
C2 = 0.0283 Nm
C3 = 0.0496 Nm
C4 = 0.1500 Nm

T1 =65.2 ms
T2=151ms

Figure 2.1/2 : IASI Scanning Torque Profile (1/3)
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1- 29 scanning cycles of 1.65°

T2+TV/2 = 1727333 ms
2/3 T1=43.4667 ms
4+—r4—>
C1
2- 1 scanning of 18.575 °

2/3(2T1+T2) = 187.6 ms

«
czl |

—><4

2T2+T1+1/3 (2T1+T2) = 461 ms
>

Figure 2.1/2 : IASI Scanning Torque Profile (2/3)
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2T2+T1+1/3 (2T1+T2)=461 ms
2/3 (2T1+T2)=187.6 ms
44— 14—

c

4- 1 scanning of 98.925°:

1/3 (2T1+T2)=93.8 ms
2/3 (2T1+T2)=187.6 ms

<4+ 4>

C4

Figure 2.1/2 : IASI Scanning Torque Profile (3/3)
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CChs axis of iplacement 73 A; Zmp

Xmp

A5

Figure 2.1/3 : IASI Cube Corner Displacement
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2.2.  INSTRUMENT MOUNTING ATTACHMENTS

2.2.1. Method

The IASI sensor module and SEM are mounted to the spacecraft using bolts and 10 mm high GFRP
low conductance stand-offs (TBC). The MEM is directly bolted to a platform radiator panel.

The bolt size, length and torque required to mount the units are :

Module / Unit Bolt Size Length (mm) Torque (Nm) Quantity
Sensor Module 12
MEM
SEM

2.2.2.  Reference Point (Hole)

The definitions of the Reference Points / Holes for the IASI modules are given in the Mechanical
Interface Control Drawing, TBD.

2.2.3.  Mounting Surfaces

" The mounting surfaces are the module baseplates : + Z instrument side for the Sensor Module and (L x
W) plane for MEM and SEM. The flatness of the mounting surfaces does not exceed TBD mm in 100
! mm. The surface roughness of the mounting surfaces are TBD pm. Each mounting foot has an area of
. TBD mm?.

2.2.4.  Materials

The matenal of the LASI Sensor Module baseplate is CFRP (TBC). The material of the MEM and SEM
modules 1s TBD. All platform mounting interfaces are 20 mm aluminium honeycomb panel with CFRP
facing skins. A carbon-carbon doubler may be used under the MEM.

2.2.5. Interface Loads

The calculated interface loads induced by the IASI modules are :

Module / Unit Shear Tension Compression Moment
(N) N) (N) (Nm)

Sensor Module

MEM

SEM

2.2.6.  Accessibility

TBD
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2.2.7.  Grounding Point
The locations of the grounding points on the IASI modules are defined in TBD.

2.3. POINTING

The pointing requirements for the IASI Sensor Module are expressed at the Instrument Mounting
Interface Reference Frame Fiasism -

Absolute Pointing Error (Accuracy) : +0.15 deg. (30)
Absolute Measurement Error (Knowledge) +0.10 deg. (30)
Absolute Rate Error (Rate) : + 0.003 deg./sec. (30)

This only applies for the Sensor Module and not for the electronic units.

2.4. ALIGNMENT

2.4.1.  Optical Reference Cube

The position of the Optical Reference Cube is given in the Mechanical Interface Control Drawing,
TBD. The cube has two alignment surfaces of size TBD mm? which are viewed from the spacecraft
TBD axes. '

The cube shall be covered with a cover in accordance with TBD prior to launch.

2.4.2. Alignment Procedure

2.4.3. Co-Alignment

The co-alignment requirements are expressed between the Instrument Mounting Interface Reference
Frames (Fyq ) of each instrument.

IASI Sensor Module shall be co-aligned with AVHRR/3 to within + 0.05 deg. (30).

Note that co-alignment is required with AMSU-A1 and AMSU-A2 in the reference documentation (Cf.
§1.3).

2.5. STRUCTURAL DESIGN

2.5.1 Limit Loads

The structural design analyses are TBD.

2.5.2.  Quasi-Static Design Loads
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2.5.3. Safety Factors
The calculated safety factors are TBD.

2.5.4. Dynamic Characteristics and Structural Mathematical Model
The structural dvnamic analyses are reported in TBD.

The first natural frequencies of the IASI Sensor Module are 107.5, 110.0 and 117.0 Hz 1n 1ts stowed
configuration, this value having been established by analysis. For the 1ASI MEM and SEM units, the
fist natural frequencies are TBD.

Structural Mathematical Model : TBD

2.6. MECHANISMS

2.6.1.  Functional Description
Cooler Cover Deployment Mechanism
TBD

Interferometer Oscillating Masses

The cube comer mechanisms are locked during Launch up to Warm-Up, and servo-controiled (eigen-
frequency = 200 Hz) in operating modes.

Earth Scan

Mobile elements of the Earth scan subsvstem are servo-controlled in operating modes.

2.6.2. Performances

2.7.  PYROS

2.8. INSTRUMENT APERTURE COVERS
2.8.1.  Sensor Covers
2.8.2. Removable Covers (Non-Flight Items)

2.8.3. Deplovable Covers (Flight Items)
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3. THERMAL INTERFACE DESCRIPTION

3.1. INSTRUMENT THERMAL CONTROL CONCEPT

3.1.1.  Category

IASI Sensor Module and electronic units are category A instruments (autonomous thermal control). The
thermal control design is based on super insulation, radiative surfaces and heaters controlled by
software.

Note that, for accommodation easiness, one or both electronic modules can be accommodated inside the
Payload Module, and then become Category B instruments.

The IASI modules have then the following thermal category
1ASI Sensor Module:  Category A
IASI MEM: Categorv B
[ASI SEM: Category A

312 Thermal Control Philosophy

Normal Operation

IASI Sensor Module uses radiators for general heat rejection and passive coolers for maintaining the
detector assemblies at operational temperature (approximately 90K).

Radiative cooling of secondary radiator to TBD K.
IASI Sensor Module configuration includes baffles around focal plane assembly and secondary radiator

to prevent solar illumination and thermal views of other instruments/equipment.
Radiators are accommodated on -Ys, -Zs and -Xs sides of the Sensor Modules.
IASI MEM and SEM : TBD.

Contingency Modes

During the contingency modes the mnstrument is switched off. The IASI Sensor Module and SEM are
maintained within their survival limits by heaters controlled by thermostats. The MEM 1is maintained
within its limits by the platform Thermal Control Subsystem.

3.2.  INSTRUMENT TEMPERATURE REQUIREMENTS AND THERMAL CONTROL
BUDGETS

3.2.1. Temperature at Conductive Interface

Temperature Ranges

The operating. non-operating and switch-on temperatures for the IASI modules are defined in Tables

-

3 2/1 and 3.2/2. The Temperature Reference Point at which these temperatures apply is defined in TBD.
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Deg. C 1 Operation I Non-QOperation Switch-On

IASI Min. Max. Min. Max. Min.

Sensor Module +10 +30 40 +60 -40
MEM -40 +60 -40 +60 -30
SEM -40 +60 -40 +60 230

Table 3.2/1 : IASI Unit Acceptance Temperatures

Deg. C Operation Non-Operation Switch-On
TIASI Min. Max. Min. Max. Min.
Sensor Module +5 +35 -45 +65 -45
MEM 45 +63 45 +65 -35
SEM 45 +65 -45 +65 -35

Table 3.2/2 : IASI Unit Qualification Temperatures (TBC)

Stability Requirements

There is no temperature stability requirement for the IASI modules.

3.2.2. Radiative Interfaces

The IASI Sensor Module radiators require the following minimum Gebhart factors to space :

- Focal plane assembly : 0.93 (TBC)
Surfaces of other instruments may be permitted in the radiator field of view provided that this Gebhart
factor requirement is met. In that respect. the identified interactions with AVHRR/3, HIRS/3 and the
rotating MIMR main reflector are acceptable (T BC). This cooling radiator operates at a temperature
of 90 K.

- Secondary radiator : 091 (TBQC)
- -Z radiator : 0.96 (TBQC)
- -Y radiator : 0.48 (TBC)
- -X radiator : 0.9 (TBC)

The IASI SEM radiators require the following minimum Gebhart factors to space
- +Z radiator : TBD
- -X radiator: TBD

The sides of the MEM are black painted to facilitate radiation cxchangé with the platform intenor
(TBC).
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Heater Power Budgets

IASI

The heater power budgets for the IASI modules are :
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The resistance of the heaters is TBD.

The heater power concept is not applicable to MEM.

Module Heater Power Budget (Watts)
/Unit Operating Operating Off Off
Hot Case Cold Case Cold Case Safe Mode
Sensor Module TBD TBD TBD TBD
SEM TBD TBD TBD TBD
Total 69 W 63 W

Category A Units

3.2.4. Instrument Thermal Dissipation
The dissipations of the IASI modules are constant throughout the orbit and are :
Module Thermal Dissipation (Watts)
{Unit Operating Operating Orbital l Contingency /
Stand-by Average Safe Mode
Sensor Module 82 82 0
MEM 69 69 0
SEM 66 66 0
3.2.5. Heat Exchange Budgets

The calculated heat transfer between the platform and the IASI modules for different cases are :

Module Conductive Heat Transfer (Orbit Average, Watts)
/Unit Operating Operating \ oft off
Hot Case Cold Case Hot Case Cold Case |
Sensor Module <5 (TBC) <5 (TBC) \ <5 (TBC) <5 (TBC) \
SEM <5 (TBC) <5 (TBC) \ <s(TBO) | <5 (TBO) J

Category B Units

Module Operative Heat Transfer (Orbit Average, Watts)
! Unit Conductive Conductive Radiative Radiative
Hot Case Cold Case ] Hot Case Cold Case
\ F\iEM TBD TBD |  TBD TED |
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3.2.6. Thermo-Elastic Interface

The 1ASI Sensor Module has an CFRP baseplate with a coefficient of thermal expansion of 2 x 10%/
deg. C (TBC). The MEM and SEM have aluminium baseplates with a coefficient of thermal expansion
of 25 x 10 / deg. C (TBC). The interfacing structure for all the LASI modules is aluminium honevcomb
with CFRP skins with a coefficient of thermal expansion of 2.0 x 10%/ deg. C (TBC).

3.3. THERMAL INTERFACES

3.3.1. Thermal Interface Drawing
The thermal interfaces are defined in Thermal Interface Drawing, TBD.

3.3.2. Conductive Interfaces

The conductive interfaces for the IASI modules are defined in the Mechanical Interface Control
Drawing (TBD)and in § 2.2.3.

GFRP stand-offs will be used between the IASI Sensor Module and the platform -Xs floor. The total
thermal conductance between the Sensor Module and the floor is TBD W/K.

'GFRP stand-offs will be used between the IASI SEM and the platform -Xs floor. The total thermal
conductance between the SEM and floor 1s TBD W/K.

A thermal interface filler will be used between the MEM and the platform radiator panel, the contact
area is TBD mm? .

The calculated temperatures at the IASI modules conductive interfaces are TBD.

3.3.3. Radiative Interfaces

The external surfaces of the IASI Sensor Module and SEM, and the thermal finishes used are given in
the Thermal Interface Drawing TBD. The Sensor Module and SEM thermal coatings are tllustrated in
Figure .3.3-1.

The exterior thermal finish of the MEM 1s black paint.

The thermo-optical properties of the finishes are given in the following table :

Surface / Material Solar Absorptance Infra-Red

BOL EOL Emittance
White Paint (PSB) 0.13 0.30 TBC 0.90
Black Paint (MEM only) N/A N/A 0.90
Gold 0.30 0.30 0.04

VDA (Vacuum Deposited Aluminium) 0.11 TBC 0.15 TBC 0.04 TBC
SSM~ : 0.15 0.25 0.78
Kapton (MLI ext) 0.36 0.46 0.63

1AST Material Thermo-Optical Properties
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Figure 3.3/1 : IASI Module Thermal Finishes (TBC)
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I The radiative environmental temperatures for the IASI modules are TBD.

3.3.4. Thermal Heat Capacity
l The thermal heat capacity of the IASI modules is TBD J/K.

3.3.5. Instrument Temperature Measurement

3.3.6. Thermal Mathematical Models

3.4. THERMAL ENVIRONMENT CONDITIONS
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4. ELECTRICAL INTERFACE DESCRIPTION

4.1. POWER SUPPLY INTERFACES
Input Voltage : 22-37 Volts DC unregulated

The following power buses are provided by the platform :

- equipment power bus, nominal and redundant

- equipment heater power bus, nominal and redundant (for non-operating modes)
- ICU (Instrument Control Unit) power bus, nominal and redundant

- ICU heater power bus, nominal and redundant (for non-operating modes)

IASI power consumption in nominal operations is :

Sensor Module basic power : 74 W
Main Electronics Module basic power : 62 W
Secondary Elect. Module basic power : 60 W

Total basic consumption : 196 W

42. COMMAND AND CONTROL INTERFACES
The command and control of the instrument is performed via the PLM OBDH bus.
IASI ICU has a nominal and redundant connection to the OBDH via a DBU supplied by the platform

In case of emergency, [ASI can receive the following signals :
- equipment switch off line (EQU SOL), nominal and redundant
- depointing signal line (DSL), TBD

4.3 SCIENCE DATA INTERFACES

IASI generates packetized measurement data, that are transferred to the PLM data handling subsystem
via a nominal and redundant connection via low bit rate data interface.

Read Cvcle (s) : 8
Packet per 64 s : 2400
Packet Size (octet) : 5014

Packetized Data Rate (kbps) : 1300

4.4, HOUSEKEEPING TELEMETRY

Thermistor Interface
- thermistor for equipment, nominal and redundant connection to the platform
- thermistor for ICU. nominal and redundant connection to the platform
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4.5. CONNECTORS AND HARNESS

4.5.1. Connectors Used at Spacecraft Interfaces

4.5.2. Connectors Used for Inter-Instrument Unit Interface

4.5.3. EMC Aspects

4.54. Cable Harness

IASI is responsible for the provision of the inter LAST unit hamess.

S. EMC/RFC INTERFACE DESCRIPTION

MMS/MET/TN/160.94

2 Rev.: O
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6. CLEANLINESS AND SPACE ENVIRONMENT DESIGN CONSTRAINTS

6.1. CLEANLINESS REQUIREMENTS AND CONTAMINATION CONTROL

6.2. RADIATION ENVIRONMENT
6.2.1. Radiation Deposit Dose

6.2.2.  Single Event Upset (SEU) and Latch-Up

6.3. SPACE ENVIRONMENT CONSTRAINTS
6.3.1. Meteoroid and Space Debris

6.3.2.  Atomic Oxygen

7. INSTRUMENT DESIGN VERIFICATION DESCRIPTION

7.1. TESTING

7.2. TEST REQUIREMENTS

7.2.1. Electrical Functional Test Description
7.2.2.  EMC Test Description

7.2.3.  Mechanical and Structural Test Description

7.2.4.  Thermal Test Description

8. GROUND SUPPORT EQUIPMENT DESCRIPTION
8.1. MECHANICAL GROUND SUPPORT EQUIPMENT

82. ELECTRICAL GROUND SUPPORT EQUIPMENT
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9. GROUND OPERATION DESCRIPTION

9.1.

9.1.1.

9.1.2.

9.1.3.

9.2.

9.3.

9.4.

9.5.

9.6.

MODEL PHILOSOPHY

Instrument Structural Model (SM)

Instrument Engineering Model (EM)

Instrument Proto-Flight Model (PFM)

Instrument Flight Model (FM)

Flight Spare Model

DELIVERY TO THE AIV SITE

INSTRUMENT INTEGRATION

PURGING REQUIREMENTS

GROUND ENVIRONMENTAL CONDITIONS

LAUNCH OPERATIONS
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PRODUCT ASSURANCE AND RELIABILITY

Design Lifetime :

0.8 over 4 years

PROGRAMME AND SCHEDULE
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INSTRUMENT INTERFACE CONTROL DOCUMENT (ICD) OUTLINE

ASCAT
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1. GENERAL

1.1. PURPOSE OF THE DOCUMENT

This document is the ASCAT Instrument Interface Control Document QOutline. It deals with interface
definition from the instrument to the METOP platform and with ASCAT responses to the genenc
METOP General Instrument Interface Control Document (GICD).

This ICD Outline of ASCAT reflects the definition status of the instrument at the end of the METOP
spacecraft Phase A study.

1.2. INSTRUMENT PRESENTATION

The advanced wind scatterometer ASCAT is a radar measuring system exploiting Doppler principle. It
operates in C-band (5.255 GHz) with a long pulse with linear frequency modulation. The ASCAT will
measure the radar reflectivity of the sea surface over two 550 km wide swaths. one on either side of the
satellite ground track. The measurements are accomplished by consecutive antenna operations covering
all three directions of viewing : fore, mid, and after beam with 45 deg., 90 deg. and 135 deg.
respectively relative to ground track. ASCAT consists of four sub-systems :

- antenna sub-system

- scatterometer front end sub-system

- radio frequency electronics sub-system
- digital control electronics sub-system

PARAMETER VALUE REMARK

Spaual Resolution <50 km Along and across track
<25km
Radiometric Resolution Kpe
- F/A beam 24 m/ Better than 3 %
- Mid beam
- F/A beam 4 m/s
- Midbeam < < Thetaj/8 kpe (%) = Thetaj/8
Thetaj = Incident Angle
Radiometric Accuracy <£0.46dB : Interbeam
£0.57dB Common Mode

Centre Frequency 5.255 GHz
Coverage
- Swath Length Continuous
- Swath Width 2 x 500 km Full performance
Locahisation Accuracy +3km Along and across track
Polansation VvV
Cross-polarisation > 15dB ! One wav propagation

Wind Mode In-Orbit Performances (TBC)
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1.3. APPLICABLE AND REFERENCE DOCUMENTATION

Applicable Documentation

General Instrument Interface Control Document - GICD
Ref. MMS/MET/SPE/JLD/159.94, Iss. 2, dated Sept. 94

Reference Documentation

ASCAT Data List
Ref PO-LI-DOS-SC-1170 (MET0039), Dated April 1992, Iss. 2

MMS/MET/TN/160.94
2 Rev.: 0
September 1994
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2. MECHANICAL INTERFACE DESCRIPTION

2.1. INSTRUMENT PHYSICAL CHARACTERISTICS

2.1.1.  Module / Unit Identification
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ASCAT consists of three antennae, and several electronic equipments with the following part numbers

and identification codes :

Sub-System / Module / Unit Acronym Part No ID Code
Antennae
Mid Antenna Assembly ANTM
Side Antenna Right - Fore ANTRF
Side Antenna Right - Aft ANTRA
Scatterometer Front End SFE
Radio Frequency Electronics
Solid State Power Amplifier SSPA
Electronic Power Conditioner EPC
Radio Frequency Unit RFU
Digital Control Electronics
Data Processing Unit DPU
Instrument Control Unit ICU
Power Distribution Unit PDU
Miscellaneous
Deplovment Electronics DPE
Wave Guide Switch WGS
Wave Guide Run WGR
Hamess -
Mid Antenna Supporting Structure MSS
HRM & Deplovment Svs. ANTRF HDSF
HRM & Deplovment Svs. ANTRA HDSA
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The overall dimensions of the modules and units are
Module / Unit L (Velocity) W H (Earth)
Antennae
ANTM 2200 mm 870 mm 299 mm
ANTRF 3000 mm 643 mm 334 mm
ANTRA 3000 mm 643 mm 334 mm
SFE ' 1680 mm 475 mm 250 mm
Radio Frequency Electronics
SSPA (2 units) 480 mm 240 mm 114 mm
EPC (2 units) 212 mm 210 mm 93 mm
RFU (2 units) 274 mm 167 mm 179 mm
Digital Control Electronics
DPU (2 units) 285 mm 268 mm 160 mm
ICU (2 units) 285 mm 268 mm 160 mm
PDU 233 mm 212mm 151 mm
Miscellaneous
DPE 150 mm 1S0mm 100 mm
WGS 172 mm 115 mm 82 mm
WGR
Harness - - -
Mid Antenna Support. Structure
HDSF
HDSA

The dimensions respectively correspond to the L (velocity) x W x H (Earth) directions. Note that, for
the antennae. these dimensions do not correspond to the in-flight position. The antennae shall nominally
be in the velocity direction for the mid antenna, and the two other ones at £ 45° of the flight direction.
This configuration will be reached after a deplovment sequence.

Note that the SFE can be compacted to 700 x 600 x 200 mm (TBC).
Accommodation

The antennae and the SFE are externally accommodated, whereas the remaining electronic units are
internally accommodated. The accommodation of the antennae shall avoid EMC conflicts. Note that
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there is no requirement for the mid-antenna to be accommodated on the nadir panel. The antennae
cannot be broken up, and then shall be considered as single booms.

The SFE electronic equipment shall be externally accommodated as close as possible to the antennae.
The other electronic equipments are mounted on their (L x W) plane inside the platform.

The harness between the ASCAT units will be supplied by the Instrument Contractor (TBC).

2.1.2.  Mechanical Interface Control Drawing

The ASCAT instrument configuration and mechanical interfaces are given in the Mechanical Interface
Control Drawing, TBD.

The ASCAT antenna configurations are illustrated in Figures 2.1/1, 2.1/2 and 2.1/3.

2.1.3.  Mass Properties
Mass

The mass properties of the ASCAT modules and units are given in Table 2.1/1. The co-ordinate
svstemns used are the Instrument Mounting Interface Reference Frames for each module or unit, Fascar.i
. with the origin being at the reference mounting hole location as defined in the Mechanical Interface
Control Drawing, TBD. The directions of the Fscat. axes are the same as the Spacecraft Reference

Frame Fs.
Moments of Inertia

The ASCAT moments of inertia are given in the following table. The co-ordinate systems used are the
Instrument Mounting Interface Reference Frames for each module or unit, Fascat.; , with the origin
being at the reference mounting hole location as defined in the Mechanical Interface Control Drawing,
TBD. The directions of the Fascart.; axes are the same as the Spacecraft Reference Frame Fs. The
accuracy of these values is within TBD % of the total instrument moment of inertia for each axis.

Module Moments of Inertia (kg.m?)

{Unit Ixx Ivy Izz Iy Ixz Iyz

Table 2.1/2 : ASCAT Moments of Inertia
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Table 2.1/1 : ASCAT Mass Properties

Module Basic Mass Centre of Mass Location (£ S mm)
/ Unit / Unit Xascat4 Y ascat4 Zascat4
+0.1 kg TBC (Sun) (Anti-velocity) (Zenith)

Antennae -

ANTM 2230 kg
ANTRF 29.20 kg
ANTRA 29.20 kg
SFE 13.99 kg
RFE -

SSPA (2 units) 2.30kg
EPC (2 units) 3.38kg
RFU (2 units) 6.00 kg
DCE -

DPU (2 units) 6.80 kg
ICU (2 units) 6.50 kg
PDU 326 kg
Miscellaneous -

DPE 1.50 kg
WGS 0.86 kg
WGR 2.60 kg
Hamess 8.00 kg
MSS 7.00 kg
HDSF 9.70 kg
HDSA 12.80 kg

TOTAL : 190.37 kg
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2.1.4. Instrument Induced Disturbances

2.1.4.1. Non Recurring Transient Events

No moving part other than those used during deployment of the antennae.

2.1.4.2. - Continuous and Recurring Transient Events

None

2.1.4.3. Induced Disturbance Torque Effect

None

2.1.4.4. Flexible Modes
" TBD

2.1.5.  Field of View Definition
The antenna fields of view are illustrated in Figures 2.1.5/1,2.1.5/2 and 2.1.5/3.
Mid antenna
The mid antenna boresight is defined as the nadir direction. The instrument field of view definition is :
- vertex - all along the antenna (Cf. drawing)
- Spacecraft provision :
. cross-track scan plane : + 60.0 deg.
. Orbit plane : = 0.6 deg.
Side antennae
The mid antenna boresight is defined as the nadir direction. The instrument field of view definition is :
- vertex : all along the antenna (Cf. drawing)
- Spacecraft provision :
. cross-track scan plane : = 70.0 deg.
. Orbit plane : = 0.6 deg.

Note that small protrusions in the ASCAT antenna field of view, such as PLM antenna or small

structures, can be tolerated.
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2.2. INSTRUMENT MOUNTING ATTACHMENTS

2.2.1. Method

The ASCAT antennae and SFE are mounted to the spacecraft’ using TBD. The other electronic
equipments are directly bolted to a platform radiator panel.

The bolt size, length and torque required to mount the units are :

Module / Unit Bolt Size Length (mm) Torque (Nm) Quantity

2.2.2. Reference Point (Hole)

The definitions of the Reference Points / Holes for the ASCAT units are given in the Mechanical
Interface Control Drawing, TBD.

2.2.3.  Mounting Surfaces

Antennae : TBD.

The mounting surfaces of the electronic equipments are the unit baseplates : (L x W) plane. They can be
accommodated in any direction. The flatness of the mounting surfaces does not exceed TBD mm in 100
mm. The surface roughness of the mounting surfaces are TBD um. Each mounting foot has an area of
TBD mm?2.

2.2.4. Materials

Antennae : TBD.

The material of the electronic equipments is TBD. Platform mounting interfaces are 20 mm aluminium
honevcomb panel with CFRP facing skins. A carbon-carbon doubler may be used under the inside
electronic equipments.

2.2.5. Interface Loads

The calculated interface loads induced by the ASCAT units are .

Module / Unit Shear Tension Compression Moment
(N) (N) N) (Nm)
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2.2.6.  Accessibility
TBD

2.2.7.  Grounding Point

The locations of the grounding points on the ASCAT units are defined in TBD.

2.3. POINTING
The pointing requirements for the ASCAT are expressed at the Instrument Mounting Interface

Reference Frame FascarT.i -

Absolute Pointing Error (Accuracy) : TBD

Absolute Measurement Error (Knowledge) TBD

Absolute Rate Error (Rate) : + 0.005 deg./sec. (30)

This only applies for the antennae (at the mounting points) and not for the electronic units.

2.4. ALIGNMENT

2.4.1.  Optical Reference Cube

The position of the Optical Reference Cube(s) is given in the Mechanical Interface Control Drawing,
TBD. The cube has two alignment surfaces of size¢ TBD mm? which are viewed from the spacecraft
TBD axes.

The cube shall be covered with a cover in accordance with TBD prior to launch.

2.4.2.  Alignment Procedure

2.4.3. Co-Alignment
TBD.
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2.5. STRUCTURAL DESIGN

2.5.1 Limit Loads

The structural design analyses are TBD.

2.5.2.  Quasi-Static Design Loads

2.5.3. Safety Factors
The calculated safety factors are TBD.

2.5.4. Dynamic Characteristics and Structural Mathematical Model

The structural dynamic analyses are reported in TBD. The first natural frequencies of the ASCAT
units, in the stowed and deployed configurations, are TBD.

2.6. MECHANISMS

2.6.1.  Functional Description
Antenna Deployment Mechanism

TBD

2.6.2. Performances

2.7. PYROS

2.8. INSTRUMENT APERTURE COVERS

None
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3. THERMAL INTERFACE DESCRIPTION

3.1. INSTRUMENT THERMAL CONTROL CONCEPT

3.1.1.  Category
The ASCAT units have the following thermal category :

Subsystem Units Category
Antenna ANTM. ANTRF, ANTRA A
SFE SFE A
RFE SSPA, EPC, RFU B
DCE DPU, ICU, PDU B
Miscellaneous DPE, WGS B

MSS, HDSF, HDSA A

3.1.2. Thermal Control Philosophy
Normal Operation
All Categorv A units are controlled by passive means.

All Categorv B units are controlled by the platform thermal control subsystem which uses passive
thermal control and possibly heaters during cold BOL conditions.

Contingency Modes
Categoryv A Units : TBD.

All category B units are maintained within its limits by the platform thermal control subsystem.

3.2. INSTRUMENT TEMPERATURE REQUIREMENTS AND THERMAL
CONTROL BUDGETS

3.2.1. Temperature at Conductive Interface

Temperature Ranges

The operating, non-operating and switch-on temperatures for the ASCAT units are defined in Tables
3.2/1 and 3.2/2. The Temperature Reference Points at which these temperatures apply is defined 1n
TBD.

Stability Requirements

There is no temperature stability requirements for the ASCAT units.
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Deg. C Operation Non-Operation Switch-On

ASCAT Min. Max. Min. Max. Min.
Antennae
ANTM TBD TBD TBD TBD TBD
ANTRF TBD TBD TBD TBD TBD
ANTRA TBD TBD TBD TBD TBD
SFE TBD TBD TBD TBD . TBD
RFE
SSPA -5 +40 -30 +70 -25
EPC -5 +40 -30 +70 -25
RFU -5 +40 -30 +70 -25
DCE
DPU -5 +40 ~40 +70 -25
ICU -10 +50 40 +70 -25
PDU -10 +50 -40 +70 -25
Miscellaneous
DPE TBD TBD TBD TBD TBD
WGS TBD TBD TBD TBD TBD
WGR TBD TBD TBD TBD TBD
Hamess TBD TBD TBD TBD TBD
MSS
HDSF
HDSA

Table 3.2/1 : ASCAT Unit Acceptance Temperatures
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Deg. C QOperation Non-Operation Switch-On

ASCAT Min. Max. Min. Max. Min.
Antennae
ANTM TBD TBD TBD TBD TBD
ANTRF TBD TBD TBD TBD TBD
ANTRA TBD TBD TBD TBD TBD
SFE TBD TBD TBD - TBD TBD
= ‘
SSPA -10 +45 -35 +75 -30
EPC -10 +45 -35 +75 -30
RFU -10 +45 -35 +75 -30
DCE
DPU -10 +45 45 +75 -30
ICU -15 +35 45 +75 -30
PDU -15 +35 45 +75 . -30
Miscellaneous
DPE TBD TBD TBD - TBD TBD
WGS TBD TBD TBD TBD TBD
WGR TBD TBD TBD TBD TBD
Harness TBD TBD TBD TBD TBD
MSS
HDSF
HDSA . J

Table 3.2/2 : ASCAT Unit Qualification Temperatures
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3.2.2. Radiative Interface
SFE : TBD.

The sides of the category B units are black painted to facilitate

interior (TBC).

3.2.3. Heater Power Budgets

ASCAT

The heater power budgets for the ASCAT units are :
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radiation exchange with the platform

Module | Heater Power Budget (Watts)
{Unit Operating Operating Off oft
Hot Case Cold Case Cold Case Safe Mode
Antennae
SFE
ANTM Supbon
HDSF
“rHDSA ‘l

The heater power concept is not applicable to Category B units.

The resistance of the heaters is TBD.

3.2.4. Instrument Thermal Dissipation

The dissipations of the ASCAT units are constant throughout the orbit and are :
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Module Thermal Dissipation (Watts)
/Unit Operating Operating Orbital Contingency /
Stand-by Average Safe Mode
Antennae
ANTM 0.0 TBD TBD 0.0
ANTRF 0.0 TBD TBD 0.0
ANTRA 0.0 TBD TBD 0.0
SFE 0.0 20.15 20.15 0.0
RFE
SSPAA/B 0.0 83.03/0.0 83.03/0.0 0.0
EPCA/B 0.0 55.23/0.0 55.23/0.0 0.0
RFUA/B 0.0 24.86/0.0 24.86/0.0 0.0
DCE
DPUA/B 0.0 2583/0.0 25.83/0.0 0.0
ICUA/B 19.25/0.0 19.25/0.0 19.25/0.0 0.0
PDU 0.0 17.46 17.46 0.0
Miscellaneous
DPE 0.0 Deplovment Deployment 0.0
Onlyv Only
WGS 00 0.0 0.0 0.0
WGR 0.0 0.0
Hamess 0.0 TBD TBD 0.0
HDSF 0.0 Deplovment Deplovment 0.0
Only Only
HDSA 0.0 Deplovment Deplovment 0.0
Only Only

ASCAT Unit Thermal Dissipation
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3.2.6. Heat Exchange Budgets

The calculated heat transfer between the platform and the ASCAT units for different cases are ~ -

Category A Units

Module Conductive Heat Transfer (Orbit Average, Watts)
{Unit Operating Operating Off Off

Hot Case Cold Case Hot Case Cold Case
Antennae <5 (TBC) <5(TBC) <5 (TBC) <5(TBC)
SFE <5 (TBC) <5 (TBC) <5 (TBC) <3 (TBC)
MSS <5 (TBC) <5 (TBC) <5 (TBC) <5 (TBC)
HDSF <5(TBC) <5 (TBC) <5 (TBC) <5 (TBC)
HDSA <5 (TBC) <5 (TBC) <5 (TBC) <5 (TBC)

Category B Units

Module Operative Heat Transfer (Orbit Average, Watts)

/ Unit Conductive Conductive Radiative Radiative
Hot Case Cold Case Hot Case Cold Case

RFE

SSPAA/B

EPCA/B

RFUA/B

DCE

DPUA/B

ICUA/B

PDU

Miscellaneous

DPE

WGS

WGR

Hamess
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3.3.7. Thermo-Elastic Interface

The interfacing platform structure for all the ASCAT units is aluminium honeycomb with CFRP skins
with a coefficient of thermal expansion of 2.0 x 10°/ deg. C (TBC). The ASCAT units are TBD.

3.3. THERMAL INTERFACES

3.3.1. Thermal Interface Drawing
The thermal interfaces are defined in Thermal Interface Drawing, TBD.

3.3.2. Conductive Interfaces

The conductive interfaces for the ASCAT units is defined in the Mechanical Interface Control Drawing
(TBD) and in § 2.2.3. The thermal blankets for the SFE will be driven by the configuratioi: exercise

outcomes.
Thermal conductance : TBD.
Category B unit baseplate contact areas : TBD.

The calculated temperatures at the ASCAT units conductive interfaces are TBD.

3.3.3. Radiative Interfaces

The external surfaces of the ASCAT Category A units, and the thermal finishes used are given in the
Thermal Interface Drawing TBD.

The exterior thermal finish of the Category B units is black paint.
The thermo-optical properties of the finishes are given in the following table :

Surface / Material Solar Absorptance Infra-Red

BOL EOL Emittance

ASCAT Material Thermo-Optical Properties

| The radiative environmental temperatures for the ASCAT units are TBD.
l
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3.3.4. Thermal Heat Capacity
The thermal heat capacities of the ASCAT units are TBD J/K.

3.3.5. Instrument Temperature Measurement

3.3.6. Thermal Mathematical Models

3.4. THERMAL ENVIRONMENT CONDITIONS

MMS/MET/TN/160.94
2 Rev.: O
September 1994
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4. ELECTRICAL INTERFACE DESCRIPTION

4.1. POWER SUPPLY INTERFACES
Input Voltage : 22-37 Volts DC unregulated

The unregulated power is supplied to the instrument ICU (nominal and redundant) which is in charge of
supplying power to all the instrument units.

ASCAT power consumption is as follows.

Units ' Redundancy Operation Pre-Op. Stand-Bv

Antennae - 0 0 0
SFE Internal 13.00 W 13.00 W 0
SSPA External 117.54 W 1.50 W 0 |
EPC External 5021 W 350W 0
RFU External 22.60 W 22.60 W 0
DPU External 2330 W 2330 W 0
ICU External 17.50 W 17.50 W 17.50 W
PDU Internal 15.87 W 529 W 0
WGS Internal 0 0 0
DPE - DeplovmentTBD - -

Harmess - 236 WTBC TBD TBD

Total Operational : 26239 W
Pre-Operational : 86.69 W
Stand-by : 1750 W

4.2. COMMAND AND CONTROL INTERFACES
| The command and control of the instrument is performed via the PLM OBDH bus

ASCAT ICU has a nominal and redundant connection to the OBDH via a DBU supplied by the
platform.

In case of emergency, ASCAT can receive the equipment switch off line (EQU SOL), nominal and
redundant.

Deplovment : TBD

4.3  SCIENCE DATA INTERFACES

ASCAT generates packetized measurement data, that are transferred to the PLM data handling
subsystem via a nominal and redundant connection via low bit rate data interface.

The data transfer is constant with a 43.330 kbps rate.



Ref

MATRA MARCON! SPACE ASCAT gjt]: :.

Page

4.4. HOUSEKEEPING TELEMETRY

4.5. CONNECTORS AND HARNESS

45.1. Connectors Used at Spacecraft Interfaces

4.5.2. Connectors Used for Inter-Instrument Unit Interface
45.3. EMC Aspects

4.5.4. Cable Harness
l ASCAT is responsible for the provision of the inter ASCAT unit hamness.

5. EMC / RFC INTERFACE DESCRIPTION

MMS/MET/TN/160.94
2 Rev.: 0
September 1994
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RF Transmitter Characteristics

The ASCAT RF transmitter has the following specified characteristics :
| ASCAT Side Beam Mid Beam
I CF 5225 GHz
| Pout 50.8 dBm
| BW 124 kHz 411 kHz
l Mod 12 kHz/ms 50 kHz/ms
l PW 10.32 ms 8.22 ms
l PRF 29 63 Hz

RF Receiver Characteristics

The ASCAT RF receiver has the following specified characteristics :

l CF BW Sensitivity

\ 5225 GHz 600 kHz - 154 dBm
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6. CLEANLINESS AND SPACE ENVIRONMENT DESIGN CONSTRAINTS

6.1. CLEANLINESS REQUIREMENTS AND CONTAMINATION CONTROL

6.2. RADIATION ENVIRONMENT
6.2.1.  Radiatien Deposit Dose

6.2.2.  Single Event Upset (SEU) and Latch-Up

6.3. SPACE ENVIRONMENT CONSTRAINTS
6.3.1. Meteoroid and Space Debris

6.3.2.  Atomic Oxygen

7. INSTRUMENT DESIGN VERIFICATION DESCRIPTION

7.1. TESTING

7.2. TEST REQUIREMENTS

7.2.1.  Electrical Functional Test Description
7.2.2. EMC Test Description

7.2.3.  Mechanical and Structural Test Description

7.2.4.  Thermal Test Description

8. GROUND SUPPORT EQUIPMENT DESCRIPTION

8.1. MECHANICAL GROUND SUPPORT EQUIPMENT

8.2. ELECTRICAL GROUND SUPPORT EQUIPMENT



MATRA MARCONI SFACE ASCAT Issue :

Date

Ref

Page -

9. GROUND OPERATION DESCRIPTION

9.1.

9.1.1.

9.1.2.

9.1.3.

9.14.

9.1.5.

9.2.

9.3.

9.4.

9.5.

9.6.

MODEL PHILOSOPHY
Instrument Structural Model (SM)
Instrument Engineering Model (EM)
Instrument Proto-Flight Model (PFM)
Instrument Flight Model (FM)
Flight Spare Model
DELIVERY TO THE AIV SITE
INSTRUMENT INTEGRATION
PURGING REQUIREMENTS

GROUND ENVIRONMENTAL CONDITIONS

LAUNCH OPERATIONS

MMS/MET/TN/160.94
2 Rev.: 0
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10. FLIGHT OPERATION DESCRIPTION

10.1. OVERVIEW

ASCAT is continuously on along the orbit. The ASCAT instrument is used for wind measurement over
ocean. Due to the swath geometry the required duty cycle in operational mode approaches 100%.

Commissioning : TBD
10.2. ORBITAL PARAMETERS

10.2.1. Operational Orbit

10.2.2. Pointing Characteristics

Yaw steering highly preferable.

10.3. MISSION OPERATION PHASES

10.4. OPERATION CONSTRAINTS AND RESPONSIBILITIES

10.4.1. Commandability

10.4.2. Observability

10.4.3. Information Provided by the Platform

Orbit Knowledge Requirement

Orbit prediction accuracy : N/A

Orbit restitution accuracy : Radial < TBD
Along track < 3 km

Across track < 5 km

10.5. INSTRUMENT OPERATION MANUAL
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11. PRODUCT ASSURANCE AND RELIABILITY
Reliability

Design Lifetime : 4 years (TBC)

Reliability : TBD

12.

PROGRAMME AND SCHEDULE

Ref

Issue :
Date
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INSTRUMENT INTERFACE CONTROL DOCUMENT (ICD) OUTLINE

MIMR
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1. GENERAL

1.1. PURPOSE OF THE DOCUMENT

This document is the MIMR Instrument Interface Control Document Outline. It deals with interface
definition from the instrument to the METOP platform and with MIMR responses to the generic
METOP General Instrument Interface Control Document (GICD).

1.2. INSTRUMENT PRESENTATION

MIMR stands for Multi-Frequency Imaging Microwave Radiometer. It is a 20 receiver, 6 frequency
passive microwave radiometric system. It receives both vertically and horizontally linear polanzed
radiation between 6.8 and 89.0 GHz. The receiver is based upon a total power radiometer configuration.

The instrument consists of a parabolic reflector of dimensions 1.6 x 1.4 m, illuminated by a set of 10
feed homs. The reflector and feed horns are mounted on a drum enclosing the reccivers, data handling
equipment, the command and control part, and the power equipment.

MIMR uses a conical scan which views the Earth with an incident angle of 55 deg. MIMR measures
geophysical parameters related to the atmosphere, the ocean, the crvosphere and the land.

The most important parameters measured are the total water vapour content, total liquid water content,
rain rate and cloud extension of the atmosphere, typhoon monitoring, ice content of clouds, wind speed
at sea surface, sea surface temperature, ice and ice mapping, snow cover over land, permanent frost,
soll moisture and vegetation charactenstics.

MIMR performance characteristics are the following

Channel 1 2 3 4 5

Pixel (along track) km 88 56 33 30 17

Pixel (across track) km 88 56 33 30 17
Sample Distance km (along track) | 13.22 13.22 13.22 | 13.226 | 6.61 33
Sample Distance km (across track) 14.8 74 74 74 37 1.83
Radiometnic Sensitivitv (deg. K) 0.2 04 ) 0.5 0.5 0.7
Radiometric Stability (deg. K) 04 0.3 0.5 0.5 0.5
Radiometric Accuracy (deg. K) 1 1 1.5 1.5 1.5 1.5
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1.3. APPLICABLE AND REFERENCE DOCUMENTATION
Applicable Documentation

General Instrument Interface Control Document - GICD
Ref. MMS/MET/SPE/JLD/159.94, Iss. 2, dated Sept. 94

Reference Documentation

MIMR Interface Control Requirements Specification Document
Ref. PO-RS-ALS-MI-1009 (MET0038), Dated May 1993, Iss. 1

MIMR Torque Disturbance Budget
Ref. PO-TN-ALS-MI-1012 (MET0188), Dated December 1993, Iss. |

MIMR Uncompensated Momentum Budget
Ref. PO-TN-ALS-MI-1014 (METO0189), Dated December 1993, Iss. 1
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2. MECHANICAL INTERFACE DESCRIPTION

2.1. INSTRUMENT PHYSICAL CHARACTERISTICS

2.1.1. Module / Unit Identification
ARIANE 5 Concept

MIMR consists of a single unit that deploys backwards once in orbit. It is characterized by a continuous
rotation of its antenna..

The total envelope is :

L (Velocity) x W x H (Earth) 954 x 1485 x 1928 mm in the stowed configuration.
1470 x 1485 x 3208 mm in the deployed configuration.

ARIANE 4 Concept

For the METOP ARIANE 4 configuration, a new MIMR concept shall be considered main.y in order to
guarantee the clearance of the instrument cold calibration towards the cold space. A new envelope has
been defined according to the following drivers : '

- no protrusion in the authorized ARIANE 4 fainng envelope,

- no protrusion in the platform solar array stowed envelope and swept volume durning primary
deployment,

- no protrusion in the thruster cone,

- in case of MIMR deplovment failure, no protrusion in the AVHRR/3, HIRS/3, AMSU-A1 and MHS
radiators, nor in the AVHRR/3 and HIRS/3 top radiant cooler radiators.

The resulting envelope is illustrated in Figure 2.1/3, and defined in Figure 2.1/4.

The detailed design issues of this new concept shall be covered in the forthcoming study phases. It
appears that a MIMR concept within this envelope is a workable solution. However the following
changes seem mandatory :

- a new concept for reflector support shall be designed

- MIMR will be split into several units : one major reflector module accommodated outside the platform
and some electronic units accommodated inside the payload module.

The reflector module shall remain inside the authorized envelope. Special attention shall be paid to
consider a MIMR cold calibration field of view that does not intercept any obstacle from the platform

balconyv
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Figure 2.1/1 : MIMR Stowed Configuration (ARIANE 5)
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MIMR is composed of 4 separated modules with the following part numbers and identification codes :

Module / Unit Acronym Part No ID Code
Sensor Module -

MCU MCU

ICPU/F (2 units) ICPU/F

LVPS (2 units) LVPS

The overall dimensions of the modules and units are :

Module / Unit ) L (Velocity) w H (Earth)
Sensor Module TBD TBD TBD
MCU 180 mm 175 mm 190 mm
ICPU/F (2 units) 210 mm 110 mm 265 mm
LVPS (2 units) 190 mm 92 mm 210 mm

2.1.2. Mechanical Interface Control Drawing

The MIMR instrument configuration and mechanical interfaces are given in the Mechanical Interface
Control Drawing, TBD.

The ARIANE 5 MIMR stowed and deploved configurations are iilustrated in Figures 2.1/1 and 2.1/2.
The dynamic envelope is also sketched in the latter drawing.

For the ARIANE 4 concept. the reflector module envelope is illustrated in Figures 2.1/3 and 2. 1/4.

2.1.3.  Mass Properties
ARIANE 5 Concept Mass
MIMR basic mass : 150 kg

ARIANE 4 Concept Mass

The mass properties of the MIMR instrument are given in the following table. The mass values are with
a TBD contingency. The co-ordinate svstems used are the Instrument Mounting Interface Reference
Frames for each module or unit, Fyqr.i . With the origin being at the reference mounting hole locations
as defined in the Mechanical Interface Control Drawing, TBD. The directions of the Fyqyr.i axes are
the same as the Spacecraft Reference Frame Fs.
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Module Current Mass Centre of Mass Location (+ 5 mm)
/ Unit / Unit XMIMR+ Y MIMRA Zyamra
+0.1 kg TBC (Sun) (Anti-velocity) (Zenith)
Sensor Module 146.4 kg
MCU 36kg
ICPU/F (2 unts) 35kg
LVPS (2 units) 1.5kg
TOTAL : 160.0 kg

Table 2.1/1 : MIMR Mass Properties
Moments of Inertia

The MIMR moments of inertia are as follows. The co-ordinate svstems used are the Instrument
Mounting Interface Reference Frames for each module or unit, Fyqyri , with the origin being at the
reference mounting hole locations as defined in the Mechanical Interface Control Drawing, TBD. The
directions of the Fyur.i axes are the same as the Spacecraft Reference Frame Fs. The accuracy of these
values is within TBD % of the total instrument moment of inertia for each axis.

Module Moments of Inertia (kg.m?)

/Unit Txx Ivy 12z Ixy Ixz Iyvz

Sensor Module -
Stowed

Sensor Module -
Deploved

MCU

ICPU/F (2 units)

LVPS (2 units)

Table 2.1/2 : MIMR Moments of Inertia

2.1.4. Instrument Induced Disturbances

2.1.4.1. Non Recurring Transient Events

Reflector deplovment . Scan/scnubber release, Scanrampup: TBD

2.1.4.2. Continuous and Recurring Transient Events

In operation. MIMR reflector rotates at a constant angular velocity (26 rpm). The unbalance values are
" clearly described in MIMR Torque Disturbance Budget. Note that the attached fax (annex to this ICD
Outline) that clearly states on the understanding of this document.

Uncompensated momentum : Cf. MIMR Uncompensated Momentum Budget.
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2.1.4.3.  Induced Disturbance Torque Effect

2.1.4.4. Flexible Modes

2.1.5.  Field of View Definition
Earth Scanning

- Vertex : Reflector

- The boresight is inclined by 46.4 deg. of the scan axis (Z axis)

- The spacecraft allocation is = 50 deg. rotation around the scan axis (Z axis)

Cold Calibration
- Vertex : Small reflector
- Boresight : Cf. Drawing 2.1.5/1

- Shape : £ 25 deg.

Ref

Issue :

Date
Page

MMS/MET/TN/160.94
2 Rev.: 0
September 1994

235

The hot calibration is performed by the instrument itself and then is transparent to the platform.

MIMR fields of view are illustrated in Figure 2.1.5/1.
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2.2.  INSTRUMENT MOUNTING ATTACHMENTS

2.2.1.  Metnod

The MIMR Sensor Module is mounted to the spacecraft using TBD. The electronic equipments are
directly bolted to a platform radiator panel.

The bolt size, lcngth and torque required to mount the units are :

Module / Unit Bolt Size Length (mm) Torque (Nm) Quantity

2.2.2.  Reference Point (Hole)

The definitions of the Reference Points / Holes for the MIMR units are given in the Mechanical
Interface Control Drawing, TBD

2.2.3.  Mounting Surfaces

The MIMR Sensor Module shall be mounted on the velocity side (-Y) of the platform, and at the top of
the platform (cold calibration field of view constraint). The interaction with the thrusters shall be
addressed.

The mounting surfaces of the electronic equipments are the unit baseplates : (L x W) plane. They can be
accommodated 1n any direction.

The flatness of the mounting surfaces does not exceed TBD mm in 100 mm. The surface roughness of
the mounting surfaces are TBD um. Each mounting foot has an area of TBD mm?.

2.2.4. Materials

Sensor Module : TBD.

The material of the electronic equipments is TBD. Platform mounting interfaces are 20 mm aluminium
honevcomb panel with CFRP facing skins. A carbon-carbon doubler may be used under the inside
electronic equipments.

2.2.5. Interface Loads

The calculated interface loads induced by the MIMR units are .

Module / Unit Shear Tension Compression Moment
(N) (N) (N) (Nm)
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2.2.6.  Accessibility
Accessibility on the +X (METOP) direction is required.

2.2.7.  Grounding Point
The locations of the grounding points on the MIMR units are defined in TBD.

2.3. POINTING

The pointing requirements for the MIMR Sensor Module are expressed at the Instrument Mounting
Interface Reference Frame Fyimr-sm-

Absolutz Pointing Error (Accuracy) : TBD
Absolute Measurement Error (Knowledge) +0.05 deg. (30) TBR
Absolute Rate Error (Rate) : + 0.005 deg./sec. (30)

This only applies for the Sensor Module and not for the electronic units.

2.4. ALIGNMENT

2.4.1.  Optical Reference Cube

The position of the Optical Reference Cube is given in the Mechanical interface Control Drawing,
TBD. The cube has two alignment surfaces of size TBD mm? which are viewed from the spacecraft
TBD axes.

The cube shall be covered with a cover in accordance with TBD prior to launch.

2.4.2. Alignment Procedure

2.4.3. Co-Alignment
TBD

2.5. STRUCTURAL DESIGN

2.5.1 Limit Loads

The structural design analyses are TBD.

2.5.2.  Quasi-Static Design Loads

2.5.3.  Safety Factors
i The calculated saferv factors are TBD
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2.5.4. Dynamic Characteristics and Structural Mathematical Model

The structural dynamic analvses are reported in TBD. The first natural frequencies of the MIMR units,
in the stowed and deploved configurations, are TBD.

2.6. MECHANISMS
2.6.1.  Functional Description

2.6.2. Performances

2.7. PYROS

2.8. INSTRUMENT APERTURE COVERS

2.8.1. Sensor Covers

2.8.2. Removable Covers (Non-Flight Items)

2.8.3. Deployable Covers (Flight Items)
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3. THERMAL INTERFACE DESCRIPTION

3.1. INSTRUMENT THERMAL CONTROL CONCEPT

3.1.1. Category

ARIANE 5 Concept

MIMR is a category A instrument (autonomous thermal control).
ARIANE 4 Concept

The reflector module is category A instrument (autonomous thermal control). The other electronics units
which are accommodated inside the platform, are category B instruments.

The MIMR instrament modules and units are classified as :

Module / Unit Category
Sensor Module A
MCU B
ICPU/F B
LVPS B

3.1.2.  Thermal Control Philosophy
Normal Operation

Sensor Module is controlled by passive means.

Al Categorv B units are controlled by the platform thermal control subsystem which uses passive

thermal control.
Contingency Modes

During the contingency modes the instrument is switched off. The MIMR Sensor Module is maintained
within its survival limits by heaters controlled by thermostats.

All category B units are maintained within 1ts limits by the platform thermal control subsystem.

3.2.  INSTRUMENT TEMPERATURE REQUIREMENTS AND THERMAL CONTROL
BUDGETS

3.2.1. Temperature at Conductive Interface

Temperature Ranges

The operating, non-operating and switch-on temperatures for the MIMR units are defined in Tables
3.2/1 and 3.2/2. The Temperature Reference Point at which these temperatures apply is defined in TBD.
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Deg. C Qperation Non-Operation Switch-On

MIMR Min. Max. Min. Max. Min.
Sensor Module
MCU
ICPU/F
LVPS

Table 3.2/1 : MIMR Unit Qualification Temperatures

Deg. C Operation Non-Operation Switch-On

MIMR Min. Max. Min. Max. Min.
Sensor Module
MCU
ICPU/F
LVPS

Table 3.2/2 : MIMR Unit Qualification Temperatures

Stability Requirements

There is no temperature stability requirements for the MIMR units.

3.2.2.  Radiative Interface

Sensor Module : TBD.

The sides of the category B units are black painted to facilitate radiation exchange with the platform
interior (TBC).

3.2.3. Heater Power Budgets

The heater power budgets for the MIMR units are :

Module Heater Power Budget (Watts)
[Unit Operating Operating | off off
Hot Case Cold Case Cold Case Safe Mode
Sensor Module ' ’

| The heater power concept is not applicable to Category B units.

! The resistance of the heaters 1s TBD.
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The dissipation of the MIMR units are constant throughout the orbit and are :

Module Thermal Dissipation (Watts)
/Unit Operating Operating Orbital Contingency /
Stand-by Average Safe Mode
Sensor Module 0.0 82.5 ™ 825 ®BC 0.0
MCU 0.0 70.0 70.0 0.0
ICPUFA/B 0.0 10.5/0 10.5/0 0.0
LVPSA/B 0.0 8.0/0.0 80/00 0.0

3.2.5. Heat Exchange Budgets

The calculated heat transfer between the platform and the MIMR units for different cases are :

Category A Units

Module Conductive Heat Transfer (Orbit Average, Watts)
/Unit Operating Operating Off Ooff
Hot Case Cold Case Hot Case Cold Case
Sensor Module <5 (TBC) <5 (TBC) <5 (TBQC) <5 (TBC)

Category B Units

Module Operative Heat Transfer (Orbit Average, Watts)
/ Unit Conductive Conductive Radiative Radiative
Hot Case Cold Case Hot Case Cold Case
MCU
ICPUF A/B
LVPSA/B

3.2.6. Thermo-Elastic Interface

The interfacing platform structure for all the MIMR units is aluminium honevcomb with CFRP skins,
with a coefficient of thermal expansion of 2.0 x 10%/ deg. C (TBC). The MIMR units are TBD.
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3.3. THERMAL INTERFACES

3.3.1. Thermal Interface Drawing
The thermal interfaces are defined in Thermal Interface Drawing, TBD.

3.3.2. Conductive Interfaces

The conductive interfaces for the MIMR units is defined in the Mechanical Interface Control Drawing
(TBD)and in § 2.2.3.

Thermal conductance : TBD.
Category B unit baseplate contact areas : TBD.

The calculated temperatures at the MIMR units conductive interfaces are TBD.

3.3.3. Radiative Interfaces

The external surfaces of the MIMR Sensor Module, and the thermal finishes used are given in the
Thermal Interface Drawing TBD.

The exterior thermal finish of the Category B units is black paint.

The thermo-optical properties of the finishes are given in the following table :

Surface / Material Solar Absorptance Infra-Red

BOL EOL Emittance

MIMR Material Thermo-Optical Properties
The radiative environmental temperatures for the MIMR units are TBD.

3.3.4. Thermal Heat Capacity
The thermal heat capacities of the MIMR modules are TBD.

3.3.5. Instrument Temperature Measurement

3.3.6. Thermal Mathematical Models

3.4. THERMAL ENVIRONMENT CONDITIONS
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4. ELECTRICAL INTERFACE DESCRIPTION

4.1. POWER SUPPLY INTERFACES
Input Voltage : 22-37 Voits DC unregulated

The following power buses are provided by the platform :

- equipment power bus, nominal and redundant

- equipment heater power bus, nominal and redundant (for non-operating modes)
- ICU (Instrument Control Unit) power bus, nominal and redundant

- ICU heater power bus, nominal and redundant (for non-operating modes)

ARIANE 5 Concept
Basic consumption : 190 W
ARIANE 4 Concept

Current consumption, i.e. including contingency :

Units Redundancy Operation
Reflector Module - 82.5
MCU Internal 70.0
ICPU/F External 10.5
LVPS External 8.0

TOTAL (Current) 171 W

4.2. COMMAND AND CONTROL INTERFACES
The command and control of the instrument is performed via the PLM OBDH bus.
MIMR ICU has a nominal and redundant connection to the OBDH via a DBU supplied by the platform.

In case of emergency, MIMR can receive the equipment switch off line (EQU SOL), nominal and
redundant.

Deplovment : TBD.

4.3 SCIENCE DATA INTERFACES

MIMR generates packetized measurement data, that are transferred to the PLM data handling
subsystem via a nominal and redundant connection via low bit rate data interface.

The data transfer is constant with a 112 kbps.

4.4. HOUSEKEEPING TELEMETRY

Thermistor Interface -
- thermistor for equipment, nominal and redundant connection to the platform
- thermistor for ICU, nominal and redundant connection to the platform
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4.5. CONNECTORS AND HARNESS

4.5.1. Connectors Used at Spacecraft Interfaces

4.5.2. Connectors Used for Inter-Instrument Unit Interface

4.53. EMC Aspects

4.5.4. Cable Harness

For the ARIANE 4 version, for which MIMR is split in several units, MIMR 1s responsible for the
provision of the inter MIMR unit harness.

5. EMC / RFC INTERFACE DESCRIPTION

RF Receiver Characteristics

The MIMR RF receiver has the following specified charactenstics

CF BW Sensitivity
6.80 GHz 200 MHz -129 dBm
10.65 GHz 100 MHz -130 dBm
18.70 GHz 200 MHz -125 dBm
23.80 GHz 400 MHz -122 dBm
36.50 GHz 1000 MHz -119 dBm
89.0 GHz 5400 MHz -112 dBm
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6. CLEANLINESS AND SPACE ENVIRONMENT DESIGN CONSTRAINTS

6.1. CLEANLINESS REQUIREMENTS AND CONTAMINATION CONTROL
Interaction with the thrusters shall be addressed.

6.2. RADIATION ENVIRONMENT

6.2.1. Radiation Deposit Dose

6.2.2. Single Event Upset (SEU) and Latch-Up

6.3. SPACE ENVIRONMENT CONSTRAINTS

6.3.1. Meteoroid and Space Debris

6.3.2.  Atomic Oxygen
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7. INSTRUMENT DESIGN VERIFICATION DESCRIPTION

7.1. TESTING

7.2. TEST REQUIREMENTS

7.2.1.  Electrical Functional Test Description
7.2.2. EMC Test Description
7.2.3. Mechanical and Structural Test Description

7.2.4. Thermal Test Description

8. GROUND SUPPORT EQUIPMENT DESCRIPTION

8.1. MECHANICAL GROUND SUPPORT EQUIPMENT

8.2. ELECTRICAL GROUND SUPPORT EQUIPMENT

MMS/MET/TN/160.94
2 Rev.: 0
September 1994
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9. GROUND OPERATION DESCRIPTION

9.1.

9.1.1.

9.1.2.

9.2.

9.3.

9.4.

9.5.

9.6.

MODEL PHILOSOPHY

Instrument Structural Model (SM)

Instrument Engineering Model (EM)

Instrument Proto-Flight Model (PFM)

Instrument Flight Model (FM)

Flight Spare Model

DELIVERY TO THE AIV SITE ,

INSTRUMENT INTEGRATION

PURGING REQUIREMENTS

GROUND ENVIRONMENTAL CONDITIONS

LAUNCH OPERATIONS

MMS/MET/TN/160.94
2 Rev.: O
September 1994
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10. FLIGHT OPERATION DESCRIPTION

10.1. OVERVIEW
MIMR is continuously on along the orbit (duty cycle : 100%).

Commissioning : TBD

10.2. ORBITAL PARAMETERS

10.2.1. Operational Orbit

10.2.2. Pointing Characteristics

10.3. MISSION OPERATION PHASES

10.4. OPERATION CONSTRAINTS AND RESPONSIBILITIES

10.4.1. Commandability

10.4.2. Observability

10.4.3. Information Provided by the Platform

No specific orbit knowledge requirement.

10.5. INSTRUMENT OPERATION MANUAL

Page
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PRODUCT ASSURANCE AND RELIABILITY

11.

Reliability

Design Lifetime : 5 vears
Reliability : TBD

12.

PROGRAMME AND SCHEDULE

MIMR
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Annex 1 : MIMR Torque Disturbance Budget
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Objet; METOP - MIMR perturbation torques
Reference document :  “MIMR Torque Disturbance Budget” PO-TN-ALS-MI-1012 02/12/93

Please find herewith a summary of MIMR perwrbation torques that were defined in the reference
document and that we have updated taking into account the new position of MIMR on the
platform. Our intent is to use these values for METOP disturbances analyses.

Table 1 provide a summary of the disturbances as they were defined in the reference document.
There are some discrepancies between the values provided in the reference document and our
computagons. Could you be so kind as to clarify these differences (the reference numbers refer o
those in table 1):

(1) : with using the indicated values of Ss. Sd, a. d and @ in the equation related to Txy,
we find a torque value equal 10 : 0.005 Nm.
But the reference document gives a torque value of : 0.011 Nm.

(2) : with using the indicated values of Ss. Sd, a, d and ® in the equation related to Txy,
we find a torque value equal 10 0.047 Nm.
But the reference document gives a torque value of : 0.012 Nm.

(3) : Sd value indicated in this cell is in fact proportional to d value (equal to about
440*d) according to the reference document. This case is the only one that we have
found 1o be function of the distance between MIMR CoG and platform CoG. Do
similar cases exist among the Ss or Sd values of table 1, that we have forgotten ?

(This remark is imponant because if the value of the distance between MIMR CoG
and platform CoG changes, then the concerned Ss or Sd values must change also.)
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Moreover, the distances (a,b,c) used in reference document to compute the unbalance effects given
in table 1 is the distance between MIMR CoG and piatform CoG. How do you take into account
the distance between unbatance mass and MIMR CoG ?

Finally the platform configuration has changed. which modifies the impact of MIMR unbalances.
The new values that we computed are summarized in tabie 2. They have been estimated using the
following lever amm between MIMR unbalance mass and platform CoG.

« According to METOP configuration as defined today, the distance berween pladorm CoG
and MIMR reference paint (indicated on figure 3) has been estimated to be :

-44m

-1.4m

-).4m

- According to MIMR configuration, the distance between static unbalance and MIMR
reference point has been estmated to be :

0.6 m

0.7 m

28m

« Finally the lever arm between MIMR static unbalance and platform CoG is :

a=-3.8m
b=-2.1 m
c=24m

If we take into account these values instead of those considered in the reference document (a=2m,
b=3m, c=2m), we obtain a new table of the perturbation torque values (that you can find atached
on table 2). Can we consider table 2 as the reference one ?

Our intent is 1o continue METOP disturbance analyses using MIMR disturbances as defined in
table 2. Could you be so kind as 10 confirm that this table 1s correct and complete.

Best regards

N

H. Boithias
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1. GENERAL

1.1. PURPOSE OF THE DOCUMENT

_This document is the SCARAB Instrument Interface Control Document Outline. It deals with interface
definition from the instrument to the METOP platform and with SCARAB responses to the generic
METOP General Instrument Interface Control Document (GICD).

1.2.  INSTRUMENT PRESENTATION

The Scanner for Radiation Budget (SCARAB) is a four channel cross track scanning radiometer. The
four spectral ranges are realised using filters and pyro-electrical detectors. SCARAB measures in the
spectral range from 0.5 to 12.5 pm. It determines the radiation budget of the Earth atmosphere system.
The wnstrument swath is + 48°55". '

Channel Spectral Region (um) Remark
1 05-0.7 Visible
2 0.2-40 Solar
3 0.2-50.0 Total
4 105-125 Atmosphenic window

1.3. APPLICABLE AND REFERENCE DOCUMENTATION
Applicable Documentation

General Instrument Interface Control Document - GICD
Ref. MMS/MET/SPE/ILD/159.94, Iss. 2, dated Sept. 94

Reference Documentation

Scarab Data List
Ref. PO-ID-SFM-SB-1051 (METO0139), Dated September 1994, Draft C
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2. MECHANICAL INTERFACE DESCRIPTION

2.1. INSTRUMENT PHYSICAL CHARACTERISTICS

2.1.1. Module/ Unit Identification

SCARARB 1s composed of :

- an optical head including the four optics and detectors, the scanner mechanism, the detector proximity
electronic and the calibration black bodies and lamps

- the radiometer and satellite interface electronics

- a pedestal (tubular mechanical structure) designed to allow field of view clearance and housing the
electronics.

SCARAB consists of a single unit.

The Part Number and Identification Code of the SCARAB instrument are
PART NO: TBD
ID CODE: TBD

The location of the labels giving these Part Numbers and Identification Codes are defined in the
Mechanical Interface Control Drawing.

The total envelope of SCARAB is : L (Velocity) x W x H (Earth) 760 x 480 x 625 mm.
SCARAB does not have anyv deplovable part.

2.1.2. Mechanical Interface Control Drawing

The SCARAB instrument configuration and mechanical interfaces are given in the Mechanical Interface
Control Drawing, TBD.

The SCARAB configuration is illustrated in Figure 2.1/1.

2.1.3.  Mass Properties
Mass

The mass properties of the SCARAB instrument are given in the following table. The co-ordinate
svstem used is the Instrument Mounting Interface Reference Frame, Fscarap » With the origin being at
the reference mounting hole location as defined in the Mechanical Interface Control Drawing, TBD. The
directions of the Fscarap axes are the same as the Spacecraft Reference Frame Fs.

Module Basic Mass Centre of Mass Location (£ 5 mm)
/Unit (£ 6.0 kg, TBC) XSCARAB Y SCARAB ZscARAB
(Sun) (Anti-velocity) (Zenith)
SCARAB 50.0kg

SCARAB Mass Properties
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Figure 2.1/1 : SCARAB Configuration
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Moments of Inertia

The SCARAB moments of inertia are as follows. The co-ordinate system used is the Instrument
Mounting Interface Reference Frame, Fscarag » With the origin being at the reference mounting hole
location as defined in the Mechanical Interface Control Drawing, TBD. The directions of the Fscaras
axes are the same as the Spacecraft Reference Frame Fs The accuracy of these values is within TBD %
of the total instrument moment of inertia for each axis.

Module Moments of Inertia (kg.m?)
/Unit Inx Iyy Izz Ixy Ixz Iyz
SCARAB
SCARAB Moments of Inertia

2.1.4. Instrument Induced Disturbances

2.1.4.1.  Non Recurring Transient Events

TBD

2.1.4.2.  Continuous and Recurring Transient Events

SCARAB scan mechanism induces reaction torques on the Y axis, as illustrated by the time
measurement simulation outputs from Figure 2.1.4/1 for a 4 sec. scan cycle, and from Figure 2.1.472
for a 12 sec. (6+6) scan cvcle.

The static and dynamic unbalance values on each axis are TBD.

Transient : TBD

2.1.43. Induced Disturbance Torque Effect

2.1.44. Flexible Modes



Angular momentum integrated over any 0.2 sec. period (Nms) :

The specifications given for dy, dt, dt,, dty, Thax

maximum allowable values.

Figure 2.1.4/1 : Reaction Torques Due to SCARAB Scan Units

4 Second Scan Cycle
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T (Nm)
A
NEXT CYCLE
Tmax1
: t (s)
t0 2 8 |
tl
t4 ts
- Tmax2
ENVELOPPE FOR SCARAB TORQUES DUE TO SCANNER
MECHANISM
Type of Repetjtion 1) [1=[0+dt1 12=t1+d[2 [3=12+dl3 t4=[3+dt4 t5=t4+dt5
operation cycle (sec.) | dty (sec.) | dty (sec.) | dt; (sec.) | di4 (sec.) dts (sec.)
Across Nominal
track scan | operaton 2 0.3 0.35 0.35 0.5 0.55
Direction of torque around Y : Tpaxy (Nm) : 0.13
Tpaxo (Nm) : 0.156
Tpaxs (Nm) : 0.17
0.05

and angular momentum are the




The specifications given for dt;, dty, dty, dtg, Tpax

maximum allowable values.

Figure 2.1.4/2 : Reaction Torques Due to SCARAB Scan Units
6 Second Scan Cycle - First Part
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T (Nm)
NEXT CYCLE
H
Tmax
t (s)
0 tl ts ’
' 74 3 t4
-Tmax
ENVELOPPE FOR SCARAB TORQUES DUE TO SCANNER
MECHANISM
(Scan type SP)
Type of | Repetton o | ty=tordyy | =t *diy ty=ty+dis | tg=tz+dty ts=ty+dts
operation cycle (sec.) | dty (sec.) di, (sec.) | dty (sec.) | dtg (sec.) dts (sec.)
ACTOoss Nominal
track scan | operation | 3.2 0.5 0.5 1.4 0.2 0.2
Direction of torque around Y : Tpax (NmM) : 0.10

and angular momentum are the
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T (Nm)
? NEXT CYCLE
Tmax
1 t2 3
t0
-Tmax

ENVELOPPE FOR SCARAB TORQUES DUE TO SCANNER

(Scan type L2/BBS)

MECHANISM

Type of | Repetiuon to | ty=tordyy | ta=tyrdip 13=1y+dts | 4=t3+dly ts=ty+dts
operation cycle (sec.) | dt; (sec.) | dt, (sec.) | dt (sec.) | dt4 (sec.) | dis (sec.)
Across Nominal
track scan | operaton | 3.2 0.3 0.3 1.1 0.5 0.6
Direction of torque around Y : Tpax (Nm) : 0.10

The specifications given for dty, dt,, dt3, dty, Trax

maximum allowable values.

Figure 2.1.4/2 : Reaction Torques Due to SCARAB Scan Units
6 Second Scan Cycle - Second Part

and angular momentum are the
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2.1.5.  Field of View Definition
SCARAB boresight is defined as the nadir direction. The instrument field of view definition is :

- vertex (Cf. drawing)

- Spacecraft provision :

. cross-track scan plane : from 83 deg. anti-Sun-wards to 65 deg. Sunwards.
This is the general envelope for + 65 deg. scanning and + 83 deg. for anti-Sun
calibration.

. Orbit plane : = 7.0 deg.

SCARARB field of view is illustrated in Figure 2.1.5/1.

2.2. INSTRUMENT MOUNTING ATTACHMENTS

2.2.1.  Method
The SCARAB instrument is mounted to the platform using 20 (TBC) M5 or M6 bolts.

The bolt size, length and torque required to mount the instrument are :

Module / Unit Bolt Size Length (mm) Torque (Nm) Quantity

SCARAB 20

2.2.2. Reference Point (Hole)

The definition of the Reference Point / Hole for SCARAB is given in the Mechanical Interface Control
Drawing, TBD.

2.2.3.  Mounting Surfaces

SCARAB is mounted on its +Z side. The flatness of the mounting surface does not exceed TBD mm in
100 mm. The surface roughness of the mounting surfaces are TBD pm. Each mounting foot has an area
of TBD mm?

2.2.4. Materials

The material of the SCARAB interface is aluminium alloy, TBD. The PLM is an aluminium
) honevcomb panel with CFRP facing skins.

2.2.5. Interface Loads

The calculated interface loads induced by the SCARAB mstrument are :

Module / Unit

Shear
(N)

Tension
(N)

Compression
(N)

Moment
(Nm)

SCARAB
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2.2.6.  Accessibility
SCARAB connectors are TBD.

2.2.7.  Grounding Point
The location of the grounding points on the SCARAB instrument are defined in TBD.

2.3. POINTING

The pointing requirements for the SCARAB instrument are expressed at the Instrument Mounting
Interface Reference Frame Fscaras -

Absolute Pointing Error (Accuracy) : TBD deg. (30)
Absolute Measurement Error (Knowledge) : TBD deg. (30)
Absolute Rate Error (Rate) : + 0.005 deg./sec. (30)

2.4. ALIGNMENT

2.4.1.  Optice! Reference Cube

The position of the Optical Reference Cube is given in the Mechanical Interface Control Drawing,
TBD. The cube has TBD alignment surfaces of size TBD mm? which are viewed from TBD.

The cube shall be covered with a cover in accordance with TBD prior to launch

2.4.2.  Alignment Procedure

2.4.3. Co-Alignment

There is no co-alignment requirement for SCARAB.

2.5. STRUCTURAL DESIGN

2.5.1 Limit Loads

The structural design analyses are TBD.

2.5.2.  Quasi-Static Design Loads

2.5.3.  Safety Factors

The calculated safety factors are TBD.
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The structural dvnamic analyses are reported in TBD. The first natural frequency of the SCARAB

instrument is 123 Hz (TBC), this value having been established by analysis.

As this frequency is above the 100 Hz limit, no mechanical interface model is required.

2.6. MECHANISMS

2.6.1.  Functional Description
SCARAB scan mechanism : TBD

2.6.2. Performances

2.7.  PYROS

None.

2.8. INSTRUMENT APERTURE COVERS

2.8.1. Sensor Covers

2.8.2. Removable Covers (Non-Flight Items)

2.8.3.  Deployable Covers (Flight Items)
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3. THERMAL INTERFACE DESCRIPTION

3.1. INSTRUMENT THERMAL CONTROL CONCEPT

SCARAB is a Category A instrument : it i thermally insulated from the platform and its internal heat is
dissipated by radiation.

3.1.1. Category

The instrument thermal design is largely passive. Present requirements are * 0.1 K for the black body
simulator of the calibration module and = 5 K for the optical head scan module. Heaters are used to
control the electronics temperature long term variation within control £ 5 K.

3.1.2.  Thermal Control Philosophy

Normal Operation

SCARAB thermal control is autonomous with dedicated radiators on the instrument sides (passive
design).

Contingency Modes

During the contingency modes the instrument is switched off. The temperature of SCARAB will be
maintained within its survival limits by survival heaters which are controiled using thermostats.

3.2. INSTRUMENT TEMPERATURE REQUIREMENTS AND THERMAL CONTROL
BUDGETS

3.2.1. Temperature at Conductive Interface

Temperature Ranges

The operating, non-operating and switch-on temperatures for the SCARAB instrument are defined
below. The Temperature Reference Point at which these temperatures apply is defined in TBD.

| Deg. C Operation Non-QOperation Switch-On
SCARAB Min. | Max. | Min. | Max. Min.
Acceptance 1
Qualification l

Stability Requirements

There is no stability requirement for SCARAB.

3.2.2. Radiative Interface

The SCARAB passive radiator areas and the thermal views to space are given below :
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Radiator Area Required Calculated Calculated
Face (m?) View Factor View Factor Gebhart
-X TBD
+Y TBD
SCARAB Radiator Areas and Thermal Fields of View
3.2.3. Heater Power Budgets
The heater power budgets for the SCARAB instrument are :
Module Heater Power Budget (Watts)
{Unit Operating Operating Off Off
Hot Case Cold Case Cold Case Safe Mode
SCARAB

The resistance of the heaters 1s TBD.

3.2.4.  Instrument Thermal Dissipation
The dissipation of the SCARAB instrument is constant throughout the orbit and is :
Module Thermal Dissipation (Watts)
/Unit Operating Operating Orbital Contingency /
Stand-by Average Safe Mode
SCARAB N/A 0.0

3.2.5. Heat Exchange Budgets

The calculated heat transfer between the platform and the SCARAB instrument for different cases are :

Module Conductive Heat Transfer (Orbit Average, Watts)

/Unit

Operating
- Hot Case

Operating
Cold Case

off
Hot Case

off
Cold Case

SCARAB

<3 (TBC)

<3 (TBC)

<5 (TBC)

<5 (TBC)

3.2.6. Thermo-Elastic Interface

The SCARAB instrument has an alummium interface with a coefficient of thermal expansion of
23x 10%7/ deg. C (TBC). The PLM mounting panel 1s alummnium honeycomb with CFRP skins with a
coefficient of thermal expansion of 2.0 x 10° / deg. C (TBC).



Ref : MMS/MET/TN/160.94

MATRA MARCONI SPACE SCARAB g;l: éeptem%:;tliggf
Page : 272

3.3. THERMAL INTERFACES

3.3.1. Thermal Interface Drawing
The thermal interfaces are defined in Thermal Interface Drawing, TBD.

3.3.2. Conductive Interfaces

The conductive interface is the instrument baseplate which is defined in the Mechanical Interface

Control Drawing (TBD), and in § 2.2.3.
The total thermal conductance between the SCARAB instrument and the PLC is TBD W/K.

The calculated temperatures at the SCARAB conductive interfaces are given in TBD.

3.3.3. Radiative Interfaces

The external surfaces of the SCARAB instrument, and the finishes used are given in the Thermal

Interface Drawing (TBD).

The thermo-optical properties of the finishes are given in the following table :

Surface / Material Solar Absorptance Infra-Red

BOL EOL ‘ Emittance

SCARAB Material Thermo-Optical Properties
The radiative environmental temperatures for SCARAB are TBD.

3.3.4. Thermal Heat Capacity
The thermal heat capacity of SCARAB is TBD J/K.

3.3.5. Instrument Temperature Measurement

3.3.6. Thermal Mathematical Models

3.4. THERMAL ENVIRONMENT CONDITIONS
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4. ELECTRICAL INTERFACE DESCRIPTION

4.1. POWER SUPPLY INTERFACES
Input Voltage : 22-37 Volts DC unregulated

The following power buses are provided by the platform :

- equipment power bus, nominal and redundant

- equipment heater power bus, nominal and redundant (for non-operating modes)
- ICU (Instrument Control Unit) power bus, nominal and redundant

- ICU heater power bus, nominal and redundant (for non-operating modes)

The orbital nominal power consumption, with margin, is 75 W (current power consumption).

4.2. COMMAND AND CONTROL INTERFACES
The command and control of the instrument is performed via the PLM OBDH bus.

SCARAB ICU has a nominal and redundant connection to the OBDH via a DBU supplied by the
platform. Note that the SCARAB ICU is shared with GOME.

" In case of emergency, SCARAB can receive the following signals
- equipment switch off line (EQU SOL), nommal and redundant
- depointing signal line (DSL), nominal and redundant

4.3 SCIENCE DATA INTERFACES

SCARAB generates packetized measurement data, that are transferred to the PLM data handling
subsystem via a nominal and redundant connection via low bit rate data interface.

The data transfer is constant with a 3 kbps rate.

4.4. HOUSEKEEPING TELEMETRY

Thermistor Interface :
- thermistor for equipment. nominal and redundant connection to the platform
- thermistor for ICU, nominal and redundant connection to the platform

4.5. CONNECTORS AND HARNESS

4.5.1. Connectors Used at Spacecraft Interfaces

4.5.2. Connectors Used for Inter-Instrument Unit Interface
4.5.3. EMC Aspects

4.5.4.  Cable Harness
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5. EMC / REC INTERFACE DESCRIPTION
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6. CLEANLINESS AND SPACE ENVIRONMENT DESIGN CONSTRAINTS

6.1.

6.2.

6.2.1.

6.2.2.

6.3.

6.3.1.

6.3.2.

CLEANLINESS REQUIREMENTS AND CONTAMINATION CONTROL

RADIATION ENVIRONMENT
Radiation Deposit Dose

Single Event Upset (SEU) and Latch-Up

SPACE ENVIRONMENT CONSTRAINTS
Meteoroid and Space Debris

Atomic Oxygen
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7. INSTRUMENT DESIGN VERIFICATION DESCRIPTION

7.1.  TESTING

7.2. TEST REQUIREMENTS

7.2.1.  Electrical Functional Test Description

7.2.2. EMC Test Description

7.2.3.  Mechanical and Structural Test Description

7.2.3.1.  Quasi-Static Test

7.2.3.2. Dynamic Model Validation

N/A (SCARARB first natural frequency is above 100 Hz).
7.2.3.3.  Vibration Tests

7.2.3.4. Acoustic Test

7.2.4.  Thermal Test Description

MMS/MET/TN/160.94

2 Rev.: 0
September 1994
275
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8. GROUND SUPPORT EQUIPMENT DESCRIPTION

8.1.

8.2.

MECHANICAL GROUND SUPPORT EQUIPMENT

ELECTRICAL GROUND SUPPORT EQUIPMENT

9. GROUND OPERATION DESCRIPTION

9.1.

9.1.4.

9.1.5.

9.2.

9.3.

9.4.

9.5.

9.6.

* MODEL PHILOSOPHY

Instrument Structural Model (SM)

Instrument Engineering Model (EM)

Instrument Proto-Flight Model (PFM)

Instrument Flight Model (FM)

Flight Spare Model

DELIVERY TO THE AIV SITE

INSTRUMENT INTEGRATION

PURGING REQUIREMENTS

GROUND ENVIRONMENTAL CONDITIONS

LAUNCH OPERATIONS

Page

MMS/MET/TN/160.94
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10. FLIGHT OPERATION DESCRIPTION

10.1. OVERVIEW
SCARARB is continuously on along the orbit (duty cycle : 100%).

Commissioning and calibration : TBD

10.2. ORBITAL PARAMETERS

10.2.1. Operational Orbit

10.2.2. Pointing Characteristics

10.3. MISSION OPERATION PHASES

10.4. OPERATION CONSTRAINTS AND RESPONSIBILITIES
10.4.1. Commandability
10.4.2. Observability

10.4.3. Information Provided by the Platform

10.5. INSTRUMENT OPERATION MANUAL

MMS/MET/TN/160.94

2 Rev.: O
September 1994
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11.

PRODUCT ASSURANCE AND RELIABILITY

Reliability

Design Lifetime : 5 vears

Reliability : 0.8 over 4 vears

12.

PROGRAMME AND SCHEDULE

SCARAB

Ref

Issue :

Date

Page

MMS/MET/TN/160.94
2 Rev.: 0
September 1994

278



Ref . MMS/MET/TN/160.94

Issue : 2 Rev.: O
MATRA MARCONI SPACE GOME Date : September 1994

Page : 279

INSTRUMENT INTERFACE CONTROL DOCUMENT (ICD) OUTLINE

GOME



Ref : MMS/MET/TN/160.94

MATRA MARCON! SPACE GOME e éeptemﬁz;‘lgg L
Page : 280
CONTENTS
L. GENERAL oo oo oo 282
1.1, PURPOSE OF THE DOCUMENT ......oooooeoooooo oo eeeoee s sesee oo oo 282
1.2, INSTRUMENT PRESENTATION ...ttt ettt ettt e et e s e e s e ra e e s s s e naas 282
1.3. APPLICABLE AND REFERENCE DOCUMENTATION ... .ouiiiiiiiieerierreen et eeemeeeaanann e snnann e eaes 282
2. MECHANICAL INTERFACE DESCRIPTION........ccoccooeocmrrrrsrer e 283
2.1. INSTRUMENT PHYSICAL CHARACTERISTICS ..ot e eeeeiaeeeeem e ..................... 283
22 INSTRUMENT MOUNTING ATTACHMENTS ... it e e miee e saas s ae e sbaananaans 287
2.3, POINTING oo oo 288
24, ALIGNMENT oo oo eee e eee e 288
2.5 STRUCTURAL DESIGN ..ottt e e e v e e e e e e e e e e e e cas e e s sa s aseseaes 288
2.6, MECHANISMS ... oo oo oo eee e 289
2T, PYROS oo e e 289
2.8 INSTRUMENT APERTURE COVERS ...ttt et eae e e ee e e et 289
3. THERMAL INTERFACE DESCRIPTION..........ooo.ooooooocooooeeroeeseee oo 290
3.1 INSTRUMENT THERMAL CONTROL CONCEPT ..ottt et 290
3.2,  INSTRUMENT TEMPERATURE REQUIREMENTS AND THERMAL CONTROL BUDGETS........... 290
33 THERMAL INT ERF ACES .ottt e e e et e e en e e en e a s beaaes 291
3.4. THERMAL ENVIRONMENT CONDITIONS ...ttt et e e e 292
4. ELECTRICAL INTERFACE DESCRIPTION.........ooooiiccooooooceooes oo 203
4. 1. POWER SUPPLY INTERFACES ... oottt et ettt et ie e ie et et e ean s ee e eeas 293
42 COMMAND AND CONTROL INTERFACES . ... oot e 293
4.3 SCIENCE DATA INTERFACES .. o it 293
.. HOUSEKEEPING TELEME T RY oottt et et e e e e e et e e e e saaea e 293
4.5 CONNECTORS AND HARNE S S ottt ettt et te et ea et e e e et r e e ana e 293
S EMC /RFC INTERFACE DESCRIPTION .....oooooiocoooeoceeeseeseeeeeeeee oo 294



Ref - MMS/MET/TN/160.94-

MATRA MARCONI SPACE GOME Issue 2 ember 199 N
Page : 281
6. CLEANLINESS AND SPACE ENVIRONMENT DESIGN CONSTRAINTS ..o 294
6.1. CLEANLINESS REQUIREMENTS AND CONTAMINATION CONTROL...coovmminnriermmnmiasennmmenees 294
6.2 RADIATION ENVIRONMENT ....ooooiimrmimssrissiasssmmss s s 294
6.3. SPACE ENVIRONMENT CONSTRAINTS ....vovievevimnrenmesesasressssss st s s s 294
; INSTRUMENT DESIGN VERIFICATION DESCRIPTION ooosrvrsmsssoee 294
T 1. TESTING .o eveeeeossssresesecemsssses e ess e 294
72 TEST REQUIREMENTS ....ooo.ommmmraasminmsssstressesmassss s e 294
¢ GROUND SUPPORT EQUIPMENT DESCRIPTION ..o 295
8.1. MECHANICAL GROUND SUPPORT EQUIPMENT L....oiiirriciiimmnrrsenssnasasssessn e mns e 295
8.2. ELECTRICAL GROUND SUPPORT EQUIPMENT ....ooviiiiircimmnineseanssmsnnaie s ssme s 295
6 GROUND OPERATION DESCRIPTION . irsomsososssssnsmsossos s 295
91 MODEL PHILOSOPHY ....oomrsiirimemmssssms s somso s s 295
9.2. DELIVERY TO THE AIV QT oo oeeeesee e e e eaeame s e b bR 295
93 INSTRUMENT INTEGRATION ...ooimiinminmmissssmss s 295
94  PURGING REQUIREMENTS  .....ooiiiiimmsiniisssnsse st 295
9.5.  GROUND ENVIRONMENTAL (670) 1) 115.(0) £ DU L e 295
96 LAUNCH OPERATIONS .....oooomiiriemimssissssss s st 295
10. FLIGHT OPERATION DESCRIPTION ...t 296
101, OVERVIEW «.oooooeooeesreseeseemasssestessesses s 296
10.2. ORBITAL PARAMETERS.......ooooirisuiemnrssosstrssss s 296
10.3. MISSION OPERATION PHASES .....ooooriiiiissis e s 296
10.4. OPERATION CONSTRAINTS AND RESPONSIBILITIES ....vvevrunnnnnsnseeensmrnsmsnsenmsssassssessssmsenseenes 296
10.5. INSTRUMENT OPERATION MANUAL .o oot eie e eatesnnsesee et ms s 296
1. PRODUCT ASSURANCE AND RELIABILITY ..ot 297

12, PROGRAMME AND SCHEDULE .....ooooviiiiiniiimmnmsris s s 297



Ref | MMS/MET/TN/160.94

MATRA MARCON! SFACE GOME g?:: éeptem};:;"fggf
Page : 282
1. GENERAL

1.1. PURPOSE OF THE DOCUMENT

This document is the GOME Instrument Interface Control Document QOutline. It deals with interface
definition from the instrument to the METOP platform and with GOME responses to the generic
METOP General Instrument Interface Control Document (GICD).

1.2.  INSTRUMENT PRESENTATION

The Global Ozone Monitoring Experiment (GOME) is a nadir-viewing spectrometer which will observe
solar radiation transmitted or scattered from the Earth atmosphere or from its surface. The recorded
spectra will be used to derive a detailed picture of the atmosphere content and profile of ozone, nitrogen
dioxide, water vapour, oxygen / oxygen dimmer, bromine oxide and other gases.

GOME instantaneous field of view is 40 km x 2 km, equivalent to 2.8 deg. x 0.14 deg. The instrument
uses a scanning mirror which scans across the satellite track. With + 31 deg. scan, global coverage can
be achieved within 3 davs.

Instrument performances is hereafter listed.

Band Wavelength (mm) | Pixel Resolution (mm) | Spectral Resolution (mm)
1A 240 - 268 0.11 0.22
1B 268 - 295
2A 290 - 312 0.12 0.24
2B 312 -405
3 400 - 603 0.2 0.4
4 590 - 790 0.2 04

Global Ozone Monitoring Experiment Characteristics

1.3.. APPLICABLE AND REFERENCE DOCUMENTATION
Applicable Documentation

General Instrument Interface Control Document - GICD
Ref. MMS/MET/SPE/JLD/159.94. Iss. 2. dated Sept. 94
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2. MECHANICAL INTERFACE DESCRIPTION

2.1.  INSTRUMENT PHYSICAL CHARACTERISTICS

2.1.1. Module / Unit Identification

GOME consists of a single unit.

The Part Number and Identification Code of the GOME instrument are :
PART NO: TBD
ID CODE: TBD

The location of the labels giving these Part Numbers and Identification Codes are defined in the
Mechanical Interface Control Drawing.

The total envelope of GOME is : L (Velocity) x W x H (Earth) 468 x 741 x 647 mm.

GOME does not have any deployable part.

2.1.2. Mechanical Interface Control Drawing

The GOME instrument configuration and mechanical interfaces are given in the Mechanical Interface
Control Drawing, TBD.

The GOME configuration is illustrated in Figure 2. 1/1.

2.1.3.  Mass Properties
Mass

The mass properties of the GOME instrument are given in the following table. The co-ordinate system
used is the Instrument Mounting Interface Reference Frame, Fgome , with the origin being at the
reference mounting hole location as defined in the Mechanical Interface Control Drawing, TBD. The
directions of the Fgomg axes are the same as the Spacecraft Reference Frame Fs.

Module Basic Mass Centre of Mass Location (x S mm)
/Unit (= 1.0 kg, TBC) XGOME YcoME ZcomE
(Sun) (Anti-velocity) (Zenith)
GOME 56.0 kg
GOME Mass Properties

Moments of Inertia

The GOME moments of inertia are as follows. The co-ordinate system used is the Instrument Mounting
Interface Reference Frame, Foome . with the origin being at the reference mounting hole location as
defined in the Mechanical Interface Control Drawing, TBD. The directions of the Foome axes are the
same as the Spacecraft Reference Frame Fs. The accuracy of these values is within TBD % of the total
instrument moment of inertia for each axis.
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Figure 2.1/1 : GOME Configuration
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Module Moments of Inertia (kg.m?)
/Unit Ixx Ivy Izz Iy Ixz Iyvz

GOME

GOME Moments of Inertia

2.14. Instrument Induced Disturbances

2.1.4.1.  Non Recurring Transient Events

TBD

2.1.4.2. Continuous and Recurring Transient Events

The instrument has an optical scan mirror that rotates along the Y axis. The generated peak torque and
angular momentum amplitude are respectively 0.02 Nm and 4E-5 Nms.

The frequency content and / or time measurement plot is TBD.
The static and dyvnamic unbalance values on each axis are TBD.

Transient : TBD

2.1.4.3.  Induced Disturbance Torque Effect

2.1.4.4. Flexible Modes

2.1.5.  Field of View Definition
GOME ficld of view is illustrated in Figure 2.1.5/1.
Nadir Field of View
GOME boresight is defined as the nadir direction. The instrument field of view definition 1s -
- vertex (Cf. drawing)
The beam width is 26 mm (TBC).
- Spacecraft provision
. cross-track scan plane : from 85 deg. anti-Sun-wards to 52 deg. Sunwards.

This is the general envelope for = 32 deg. scanning and + 85 deg. for anti-Sun
calibration.

. Orbit plane : = 0 deg. (included in the vertex definition)
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Sun Calibration Field of View

GOME boresight is defined as a rotation of 21.5 deg. around the nadir axis (-Z) of the velocity (-Y)
axis, towards the Sun direction. The instrument field of view definition is :

- vertex (Cf. drawing)

- Spacecraft provision

. + 7.5 deg. in the XY plane.

GOME

. + 1.5 deg. in the boresight / Z plane.

Ref : MMS/MET/TN/160.94
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This Sun calibration field of view shall adjusted to the METOP orbit.

2.2.  INSTRUMENT MOUNTING ATTACHMENTS

2.2.1. Method

The GOME instrument is mounted to the platform using TBD boilts.

The bolt size, length and torque required to mount the instrument are :

Module / Unit

Bolt Size

Length (mm)

Torque (Nm) Quantity

GOME

2.2.2.  Reference Point (Hole)

The definition of the Reference Point / Hole for GOME is given in the Mechanical Interface Control

Drawing, TBD.

2.2.3.  Mounting Surfaces

GOME is mounted on its +Y sidc. The flatness of the mounting surface does not exceed TBD mm in
100 mm. The surface roughness of the mounting surfaces are TBD um. Each mounting foot has an area

of TBD mm?.

2.2.4. Materials

The material of the GOME interface is aluminium alloy, TBD. The PLM 1s an aluminium honevcomb

panel with CFRP facing skins.

2.2.5. Interface Loads

The calculated interface loads induced by the GOME instrument are

Module / Unit

Shear
(N)

Tension
N)

Compression Moment

GOME l

N) ; (Nm)
i
\




Ref : MMS/MET/TN/160.94
Issue : 2 Rev.: 0

Date : September 1994

Page : 288

MATRA MARCONI SPACE GOME

2.2.6.  Accessibility
GOME connectors are TBD.

2.2.7.  Grounding Point

The location of the grounding points on the GOME instrument are defined in TBD.

2.3. POINTING

The pointing requirements for the GOME instrument are expressed at the Instrument Mounting
Interface Reference Frame Fgome -

Absolute Pointing Error (Accuracy) TBD deg. (30)
Absolute Measurement Error (Knowledge) : TBD deg. (30)
Absolute Rate Error (Rate) : + 0.005 deg /sec. (30)

2.4.  ALIGNMENT

2.4.1.  Optical Reference Cube

The position of the Optical Reference Cube 1s given in the Mechanical Interface Control Drawing,
TBD. The cube has TBD alignment surfaces of size TBD mm? which are viewed from TBD.

The cube shall be covered with a cover in accordance with TBD prior to launch

2.4.2.  Alignment Procedure

2.4.3. Co-Alignment

There 1s no co-alignment requirement for GOME.

2.5.  STRUCTURAL DESIGN

2.5.1 Limit Loads

The structural design analyses are TBD.

2.5.2.  Quasi-Static Design Loads

2.53.  Safety Factors

The calculated safety factors are TBD.
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2.5.4. Dynamic Characteristics and Structural Mathematical Model

The structural dynamic analyses are reported in TBD.

2.6. MECHANISMS

2.6.1.  Functional Description

GOME scan mechanism : TBD

2.6.2. Performances

2.7. PYROS

None.

2.8. INSTRUMENT APERTURE COVERS

2.8.1. Sensor Covers

2.8.2. Removable Covers (Non-Flight Items)

2.8.3.  Deployable Covers (Flight Items)

MMS/MET/TN/160.94
2 Rev.: O
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3. THERMAL INTERFACE DESCRIPTION

3.1. INSTRUMENT THERMAL CONTROL CONCEPT

3.1.1.  Category

GOME is a Category A instrument. Its thermal control is autonomous with dedicated radiators on the
instrument sides.

3.1.2. Thermal Control Philosophy

Normal Operation

Passive concept using radiators (TBD).

Contingency Modes

During the contingency modes the instrument is switched off. The temperature of GOME will be
maintained within its survival limits by survival heaters which are controlled using thermostats.

3.2. INSTRUMENT TEMPERATURE REQUIREMENTS AND THERMAL CONTROL
BUDGETS

3.2.1. Temperature at Conductive Interface

Temperature Ranges

The operating, non-operating and switch-on temperatures for the GOME instrument are defined below.
The Temperature Reference Point at which these temperatures apply is defined in TBD.

Deg. C Operation Non-Operation Switch-On
GOME Min. Max. Min. Max. Min.
Acceptance ‘
Qualification

Stability Requirements

There is no stability requirement for GOME.

3.2.2. Radiative Interface

The GOME passive radiator areas and the thermal views to space are given below :

Radiator Area Required Calculated Calculated
Face (m?) View Factor View Factor Gebhart
-X TBD
-Z TBD

GOME Radiator Areas and Thermal Fields of View
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3.2.3. Heater Power Budgets

The heater power budgets for the GOME instrument are

Module Heater Power Budget (Watts)
/Unit Operating Operating Off Off
Hot Case Cold Case Cold Case Safe Mode
GOME

The resistance of the heaters is TBD.

3.2.4. Instrument Thermal Dissipation

The dissipation of the GOME instrument is constant throughout the orbit and 1s :

Module Thermal Dissipation (Watts)
[Unit Operating Operating Orbital Contingency /
Stand-by Average Safe Mode
GOME N/A 42 (TBC) 42 (TBC) 0.0

3.2.5. Heat Exchange Budgets

The calculated heat transfer between the platform and the GOME instrument for different cases are :

Module Conductive Heat Transfer (Orbit Average, Watts)
/Unit Operating Operating off - Off
Hot Case Cold Case Hot Case Cold Case
GOME <5 (TBC) <3 (TBC) <5 (TBC) <5 (TBC)

3.2.6. Thermo-Elastic Interface

The GOME instrument has an aluminium interface with a coefficient of thermal expansion of 25 x 10°
/ deg. C (TBC). The PLM mounting panel is aluminium honevcomb with CFRP skins with a coefficient
of thermal expansion of 2.0 x 10° / deg. C (TBC).

3.3. THERMAL INTERFACES

3.3.1. Thermal Interface Drawing

The thermal interfaces are defined in Thermal Interface Drawing, TBD.

3.3.2. Conductive Interfaces

The conductive interface is the instrument baseplate which is defined in the Mechanical Interface
Control Drawing (TBD), and in § 2.2.5.
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The total thermal conductance between the GOME instrument and the PLC is TBD W/K.

The calculated temperatures at the GOME conductive interfaces are given in TBD.

3.3.3.  Radiative Interfaces

The external surfaces of the GOME instrument, and the finishes used are given in the Thermal Interface
Drawing (TBD).

The thermo-optical properties of the finishes are given in the following table :

Surface / Material Solar Absorptance Infra-Red

BOL EOL Emittance

GOME Material Thermo-Optical Properties
The radiative environmental temperatures for GOME are TBD.

3.3.6. Thermal Heat Capacity
The thermal heat capacity of GOME 1s TBD J/K.

3.3.5. Instrument Temperature Measurement

3.3.6. Thermal Mathematical Models

34. THERMAL ENVIRONMENT CONDITIONS
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4. ELECTRICAL INTERFACE DESCRIPTION

4.1. POWERSUPPLY INTERFACES
Input Voltage : 22-37 Volts DC unregulated

The following power buses are provided by the platform :
- equipment power bus,
- equipment heater power bus (for non-operating modes)

These power lines are not redunded (TBC). For GOME ICU. since it is shared with SCARAB, power
lines are described in the SCARAB ICD.

The total power consumption is 42 W in nominal operations (basic value).

42. COMMAND AND CONTROL INTERFACES

The command and control of the instrument is performed via the PLM OBDH bus.

GOME ICU is shared with SCARAB. Refer to SCARAB ICD for interface description.

In case of emergency. GOME can receive the equipment switch off line (EQU SOL, non redunded

connection).

43 SCIENCE DATA INTERFACES

GOME generates packetized measurement data, that are transferred to the PLM data handling
subsystem via a non redunded connection via low bit rate data interface.

The data transfer is constant with a 50 kbps rate.

4.4. HOUSEKEEPING TELEMETRY

Thermistor interface for equipment, non redunded connection to the platform
45. CONNECTORS AND HARNESS

45.1. Connectors Used at Spacecraft Interfaces

45.2. Connectors Used for Inter-Instrument Unit Interface

4.5.3. EMC Aspects

4.5.4. Cable Harness
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6. CLEANLINESS AND SPACE ENVIRONMENT DESIGN CONSTRAINTS

6.1.

6.2.

6.2.1.

6.2.2.

6.3.

6.3.1.

6.3.2.

CLEANLINESS REQUIREMENTS AND CONTAMINATION CONTROL

RADIATION ENVIRONMENT
Radiation Deposit Dose

Single Event Upset (SEU) and Latch-Up

SPACE ENVIRONMENT CONSTRAINTS
Meteoroid and Space Debris

Atomic Oxygen

7. INSTRUMENT DESIGN VERIFICATION DESCRIPTION

7.1.

7.2

7.2.1.

7.2.2.

TESTING

TEST REQUIREMENTS
Electrical Functional Test Description
EMC Test Description
Mechanical and Structural Test Description

Thermal Test Description
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8. GROUND SUPPORT EQUIPMENT DESCRIPTION

8.1.

8.2

MECHANICAL GROUND SUPPORT EQUIPMENT

ELECTRICAL GROUND SUPPORT EQUIPMENT

9. GROUND OPERATION DESCRIPTION

9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

MODEL PHILOSOPHY

Instrument Structural Model (SM)

Instrument Engineering Model (EM)

Instrument Proto-Flight Model (PFM)

Instrument Flight Model (FM)

Flight Spare Model

DELIVERY TO THE AlV SITE

INSTRUMENT INTEGRATION

PURGING REQUIREMENTS

GROUND ENVIRONMENTAL CONDITIONS

LAUNCH OPERATIONS
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Date

10. FLIGHT OPERATION DESCRIPTION

10.1. OVERVIEW
GOME is continuously on along the orbit (duty cycle : 100%).

Commissioning and calibration : TBD

10.2. ORBITAL PARAMETERS

10.2.1. Operational Orbit

10.2.2. Pointing Characteristics

10.3. MISSION OPERATION PHASES

10.4. OPERATION CONSTRAINTS ANU RESPONSIBILITIES
10.4.1. Commandability
10.4.2. Observability

10.4.3. Information Provided by the Platform

10.5. INSTRUMENT OPERATION MANUAL
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11.

PRODUCT ASSURANCE AND RELIABILITY

Reliability

Design Lifetime : S vears

Reliability : 0.8 over 4 vears

12.

PROGRAMME AND SCHEDULE

GOME

Ref

Issue

Date
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